利用遗传和贝叶斯优化算法优化长短期记忆网络,实现准确预测

M. Zulfiqar
{"title":"利用遗传和贝叶斯优化算法优化长短期记忆网络,实现准确预测","authors":"M. Zulfiqar","doi":"10.1016/j.nxener.2025.100425","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate load forecasting is crucial for effective grid management and strategic decision-making in the energy sector, particularly due to the inherent volatility and nonlinearity in load demand. This paper introduces a hybrid forecasting framework that combines advanced feature selection and Bayesian optimization (BO) to tune the long short-term memory (LSTM) model. The feature selection employs a genetic algorithm-based wrapper to systematically eliminate irrelevant and redundant features, enhancing computational efficiency and addressing dimensionality challenges. Unlike conventional approaches, the proposed framework uses BO for LSTM hyperparameter tuning, overcoming manual tuning limitations and reducing the risk of suboptimal performance. Integrating the search capabilities of the genetic algorithm with LSTM’s nonlinear modeling strengths and the optimization precision of BO, the framework achieves superior accuracy, enhanced stability, and accelerated convergence. The proposed model achieves a mean absolute percentage error of 0.5% by iteration 12, converging 20–40% faster than counterpart algorithms. Whereas, the other models exhibit slower convergences with an error of 1.4–1.6%. Statistical analysis validates the performance of the proposed algorithm marking it as a robust solution for dynamic forecasting, with precision and stability for real-world applications.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100425"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing long short-term memory network with genetic and Bayesian optimization algorithms for accurate forecasting\",\"authors\":\"M. Zulfiqar\",\"doi\":\"10.1016/j.nxener.2025.100425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate load forecasting is crucial for effective grid management and strategic decision-making in the energy sector, particularly due to the inherent volatility and nonlinearity in load demand. This paper introduces a hybrid forecasting framework that combines advanced feature selection and Bayesian optimization (BO) to tune the long short-term memory (LSTM) model. The feature selection employs a genetic algorithm-based wrapper to systematically eliminate irrelevant and redundant features, enhancing computational efficiency and addressing dimensionality challenges. Unlike conventional approaches, the proposed framework uses BO for LSTM hyperparameter tuning, overcoming manual tuning limitations and reducing the risk of suboptimal performance. Integrating the search capabilities of the genetic algorithm with LSTM’s nonlinear modeling strengths and the optimization precision of BO, the framework achieves superior accuracy, enhanced stability, and accelerated convergence. The proposed model achieves a mean absolute percentage error of 0.5% by iteration 12, converging 20–40% faster than counterpart algorithms. Whereas, the other models exhibit slower convergences with an error of 1.4–1.6%. Statistical analysis validates the performance of the proposed algorithm marking it as a robust solution for dynamic forecasting, with precision and stability for real-world applications.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"9 \",\"pages\":\"Article 100425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X25001887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的负荷预测对于有效的电网管理和能源部门的战略决策至关重要,特别是由于负荷需求固有的波动性和非线性。本文介绍了一种结合高级特征选择和贝叶斯优化(BO)的混合预测框架来调整长短期记忆(LSTM)模型。特征选择采用基于遗传算法的包装器,系统地剔除不相关和冗余的特征,提高了计算效率,解决了维数挑战。与传统方法不同,所提出的框架使用BO进行LSTM超参数调优,克服了手动调优的限制,降低了性能次优的风险。该框架将遗传算法的搜索能力、LSTM的非线性建模优势和BO的优化精度相结合,实现了更高的精度、更强的稳定性和更快的收敛速度。经过第12次迭代,该模型的平均绝对百分比误差为0.5%,收敛速度比同类算法快20-40%。而其他模型的收敛速度较慢,误差为1.4-1.6%。统计分析验证了所提出算法的性能,使其成为动态预测的鲁棒解决方案,在实际应用中具有精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing long short-term memory network with genetic and Bayesian optimization algorithms for accurate forecasting
Accurate load forecasting is crucial for effective grid management and strategic decision-making in the energy sector, particularly due to the inherent volatility and nonlinearity in load demand. This paper introduces a hybrid forecasting framework that combines advanced feature selection and Bayesian optimization (BO) to tune the long short-term memory (LSTM) model. The feature selection employs a genetic algorithm-based wrapper to systematically eliminate irrelevant and redundant features, enhancing computational efficiency and addressing dimensionality challenges. Unlike conventional approaches, the proposed framework uses BO for LSTM hyperparameter tuning, overcoming manual tuning limitations and reducing the risk of suboptimal performance. Integrating the search capabilities of the genetic algorithm with LSTM’s nonlinear modeling strengths and the optimization precision of BO, the framework achieves superior accuracy, enhanced stability, and accelerated convergence. The proposed model achieves a mean absolute percentage error of 0.5% by iteration 12, converging 20–40% faster than counterpart algorithms. Whereas, the other models exhibit slower convergences with an error of 1.4–1.6%. Statistical analysis validates the performance of the proposed algorithm marking it as a robust solution for dynamic forecasting, with precision and stability for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信