基于射频磁控溅射SnO2薄膜的DMC传感器制备工艺研究

IF 4.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jia Ren , Gaoxiang Xu , Kanglu Li , Aijun Yang , Jifeng Chu , Huan Yuan , Mingzhe Rong , Xiaohua Wang
{"title":"基于射频磁控溅射SnO2薄膜的DMC传感器制备工艺研究","authors":"Jia Ren ,&nbsp;Gaoxiang Xu ,&nbsp;Kanglu Li ,&nbsp;Aijun Yang ,&nbsp;Jifeng Chu ,&nbsp;Huan Yuan ,&nbsp;Mingzhe Rong ,&nbsp;Xiaohua Wang","doi":"10.1016/j.sna.2025.117088","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion battery thermal runaway poses significant safety risks, necessitating effective early monitoring via characteristic gas detection. This study focuses on developing highly selective and sensitive SnO<sub>2</sub>-based gas sensors for detecting dimethyl carbonate (DMC), a key early warning gas during thermal runaway. Using radio frequency magnetron sputtering, single-layer SnO<sub>2</sub> and stacked SnO<sub>2</sub>/TiO<sub>2</sub> sensors were fabricated and optimized for process parameters (sputtering power, time, vacuum, Ar/O<sub>2</sub> ratio, and annealing). Experimental results show that the optimal single-layer SnO<sub>2</sub> sensor (60 W power, 6 h sputtering, 1 Pa vacuum, 30:5 Ar/O<sub>2</sub> ratio, and 500°C annealing) exhibits a detection limit of 50 ppb for DMC, with rapid response (7 s) and superior selectivity against H<sub>2</sub> and CO interference. The stacked SnO<sub>2</sub>/TiO<sub>2</sub> structure further enhances performance, achieving a resistance baseline stability of 30–40 Ω and a response to DMC 2–14 times higher than other gases. Characterization via SEM and XRD confirms the formation of porous, crystalline SnO<sub>2</sub> and heterojunction structures, explaining improved gas adsorption and electron transfer efficiency. This work demonstrates that magnetron sputtering enables precise control of sensor microstructure, offering a viable solution for early thermal runaway detection in lithium-ion batteries.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"395 ","pages":"Article 117088"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the fabrication process of DMC sensors based on RF magnetron sputtered SnO2 thin films\",\"authors\":\"Jia Ren ,&nbsp;Gaoxiang Xu ,&nbsp;Kanglu Li ,&nbsp;Aijun Yang ,&nbsp;Jifeng Chu ,&nbsp;Huan Yuan ,&nbsp;Mingzhe Rong ,&nbsp;Xiaohua Wang\",\"doi\":\"10.1016/j.sna.2025.117088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion battery thermal runaway poses significant safety risks, necessitating effective early monitoring via characteristic gas detection. This study focuses on developing highly selective and sensitive SnO<sub>2</sub>-based gas sensors for detecting dimethyl carbonate (DMC), a key early warning gas during thermal runaway. Using radio frequency magnetron sputtering, single-layer SnO<sub>2</sub> and stacked SnO<sub>2</sub>/TiO<sub>2</sub> sensors were fabricated and optimized for process parameters (sputtering power, time, vacuum, Ar/O<sub>2</sub> ratio, and annealing). Experimental results show that the optimal single-layer SnO<sub>2</sub> sensor (60 W power, 6 h sputtering, 1 Pa vacuum, 30:5 Ar/O<sub>2</sub> ratio, and 500°C annealing) exhibits a detection limit of 50 ppb for DMC, with rapid response (7 s) and superior selectivity against H<sub>2</sub> and CO interference. The stacked SnO<sub>2</sub>/TiO<sub>2</sub> structure further enhances performance, achieving a resistance baseline stability of 30–40 Ω and a response to DMC 2–14 times higher than other gases. Characterization via SEM and XRD confirms the formation of porous, crystalline SnO<sub>2</sub> and heterojunction structures, explaining improved gas adsorption and electron transfer efficiency. This work demonstrates that magnetron sputtering enables precise control of sensor microstructure, offering a viable solution for early thermal runaway detection in lithium-ion batteries.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"395 \",\"pages\":\"Article 117088\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725008945\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725008945","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池热失控存在重大安全隐患,需要通过特征气体检测进行有效的早期监测。本研究的重点是开发高选择性和灵敏度的基于sno2的气体传感器,用于检测碳酸二甲酯(DMC),这是热失控过程中的关键预警气体。采用射频磁控溅射技术制备了SnO2单层传感器和SnO2/TiO2堆叠传感器,并对溅射功率、溅射时间、真空度、Ar/O2比和退火工艺参数进行了优化。实验结果表明,最优的单层SnO2传感器(60 W功率,6 h溅射,1 Pa真空,30:5 Ar/O2比,500℃退火)对DMC的检测限为50 ppb,响应速度快(7 s),对H2和CO干扰有较好的选择性。堆叠的SnO2/TiO2结构进一步提高了性能,实现了30-40 Ω的电阻基线稳定性,对DMC 2-14的响应比其他气体高。通过SEM和XRD的表征证实了多孔、结晶的SnO2和异质结结构的形成,解释了气体吸附和电子转移效率的提高。这项工作表明,磁控溅射能够精确控制传感器微观结构,为锂离子电池的早期热失控检测提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the fabrication process of DMC sensors based on RF magnetron sputtered SnO2 thin films
Lithium-ion battery thermal runaway poses significant safety risks, necessitating effective early monitoring via characteristic gas detection. This study focuses on developing highly selective and sensitive SnO2-based gas sensors for detecting dimethyl carbonate (DMC), a key early warning gas during thermal runaway. Using radio frequency magnetron sputtering, single-layer SnO2 and stacked SnO2/TiO2 sensors were fabricated and optimized for process parameters (sputtering power, time, vacuum, Ar/O2 ratio, and annealing). Experimental results show that the optimal single-layer SnO2 sensor (60 W power, 6 h sputtering, 1 Pa vacuum, 30:5 Ar/O2 ratio, and 500°C annealing) exhibits a detection limit of 50 ppb for DMC, with rapid response (7 s) and superior selectivity against H2 and CO interference. The stacked SnO2/TiO2 structure further enhances performance, achieving a resistance baseline stability of 30–40 Ω and a response to DMC 2–14 times higher than other gases. Characterization via SEM and XRD confirms the formation of porous, crystalline SnO2 and heterojunction structures, explaining improved gas adsorption and electron transfer efficiency. This work demonstrates that magnetron sputtering enables precise control of sensor microstructure, offering a viable solution for early thermal runaway detection in lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信