半线性抛物型温和增长问题的不连续Galerkin时间步进法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Raksha Devi, Dwijendra Narain Pandey
{"title":"半线性抛物型温和增长问题的不连续Galerkin时间步进法","authors":"Raksha Devi,&nbsp;Dwijendra Narain Pandey","doi":"10.1016/j.camwa.2025.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the numerical solution of semilinear parabolic equations under mild growth conditions on the nonlinear source function, focusing on time discretization using the discontinuous Galerkin (DG) method. A novel technique is proposed for handling terms that arise from mild growth condition during the application of the DG method in time. This approach ensures the solvability of the semi-discrete scheme without requiring any boundedness assumptions on the nonlinearity. Additionally, we establish the optimal order of convergence for the semi-discrete approach. Subsequently, we combine the continuous Galerkin method in space with the discontinuous Galerkin method in the temporal direction to develop a fully discrete scheme. We demonstrate that the fully discrete (DG-CG) scheme achieves optimal convergence rates while accommodating the mild growth conditions under various hypotheses on the exact solution <em>u</em>. Our theoretical findings are verified through a series of numerical experiments.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"198 ","pages":"Pages 274-292"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin time-stepping method for semilinear parabolic problems with mild growth condition\",\"authors\":\"Raksha Devi,&nbsp;Dwijendra Narain Pandey\",\"doi\":\"10.1016/j.camwa.2025.09.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the numerical solution of semilinear parabolic equations under mild growth conditions on the nonlinear source function, focusing on time discretization using the discontinuous Galerkin (DG) method. A novel technique is proposed for handling terms that arise from mild growth condition during the application of the DG method in time. This approach ensures the solvability of the semi-discrete scheme without requiring any boundedness assumptions on the nonlinearity. Additionally, we establish the optimal order of convergence for the semi-discrete approach. Subsequently, we combine the continuous Galerkin method in space with the discontinuous Galerkin method in the temporal direction to develop a fully discrete scheme. We demonstrate that the fully discrete (DG-CG) scheme achieves optimal convergence rates while accommodating the mild growth conditions under various hypotheses on the exact solution <em>u</em>. Our theoretical findings are verified through a series of numerical experiments.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"198 \",\"pages\":\"Pages 274-292\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212500416X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500416X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了非线性源函数在温和增长条件下半线性抛物方程的数值解,重点研究了用不连续Galerkin (DG)方法进行时间离散的方法。提出了一种新的技术,用于处理在DG法应用过程中由于温和生长条件而产生的术语。这种方法保证了半离散格式的可解性,而不需要对非线性作任何有界假设。此外,我们建立了半离散方法的最优收敛阶。随后,我们将空间上的连续Galerkin方法与时间方向上的不连续Galerkin方法结合起来,得到了一个完全离散格式。我们证明了在精确解u的各种假设下,完全离散(DG-CG)格式在适应温和增长条件的同时达到了最佳收敛速率。我们的理论发现通过一系列数值实验得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous Galerkin time-stepping method for semilinear parabolic problems with mild growth condition
We investigate the numerical solution of semilinear parabolic equations under mild growth conditions on the nonlinear source function, focusing on time discretization using the discontinuous Galerkin (DG) method. A novel technique is proposed for handling terms that arise from mild growth condition during the application of the DG method in time. This approach ensures the solvability of the semi-discrete scheme without requiring any boundedness assumptions on the nonlinearity. Additionally, we establish the optimal order of convergence for the semi-discrete approach. Subsequently, we combine the continuous Galerkin method in space with the discontinuous Galerkin method in the temporal direction to develop a fully discrete scheme. We demonstrate that the fully discrete (DG-CG) scheme achieves optimal convergence rates while accommodating the mild growth conditions under various hypotheses on the exact solution u. Our theoretical findings are verified through a series of numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信