Rajesh K. Sahoo , Dharmendra Singh , Amritraj Mahato , Pankaj K. Giri , Nitin Sharma , Lupteindu Chhura , Rahul Mahato , Sneha B. Linda , Harish Kumar , Suhail A. Tali , Rahbar Ali , M. Afzal Ansari , R. Kumar , S. Muralithar , R.P. Singh
{"title":"利用18O+154Sm体系中蒸发残留物的前反冲范围分布进行复合和非复合核聚变","authors":"Rajesh K. Sahoo , Dharmendra Singh , Amritraj Mahato , Pankaj K. Giri , Nitin Sharma , Lupteindu Chhura , Rahul Mahato , Sneha B. Linda , Harish Kumar , Suhail A. Tali , Rahbar Ali , M. Afzal Ansari , R. Kumar , S. Muralithar , R.P. Singh","doi":"10.1016/j.nuclphysa.2025.123245","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigates partial linear momentum transfer in the non-compound nuclear fusion (NCNF) process by analyzing the forward recoil range distributions (FRRDs) of evaporation residues (ERs) produced in the <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O+<span><math><msup><mrow></mrow><mn>154</mn></msup></math></span>Sm system at projectile energy <span><math><mo>≈</mo></math></span> 5.27 MeV/nucleon. The ERs formed through xn and pxn evaporation channels exhibit single-peaked gaussian distributions in forward recoil ranges while their range-integrated cross sections alines well with theoretical prediction of PACE-4 code. These results show the signature of complete momentum transfer and formation of a compound nucleus <span><math><msup><mrow></mrow><mn>172</mn></msup></math></span>Yb*. However, ERs produced via <span><math><mi>α</mi></math></span> spectator channels shows single peaked gaussian distribution in forward recoil ranges but with a shorter mean ranges and larger cross sections than theoretical predictions. This result suggests that partial momentum transfer results from the breakup of <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O into <span><math><msup><mrow></mrow><mn>14</mn></msup></math></span>C+<span><math><mi>α</mi></math></span>, contributing to the formation of an intermediate <span><math><msup><mrow></mrow><mn>168</mn></msup></math></span>Er* composite system. To investigate isotopic effects on NCNF dynamics, reactions induced by <span><math><msup><mrow></mrow><mn>16</mn></msup></math></span>O and <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O projectiles were compared within the framework of Z<span><math><msub><mrow></mrow><mi>P</mi></msub></math></span>Z<span><math><msub><mrow></mrow><mi>T</mi></msub></math></span> and total asymmetry (<span><math><msubsup><mi>μ</mi><mrow><mi>c</mi><mi>m</mi></mrow><mi>T</mi></msubsup></math></span>). At energies <span><math><mo>≈</mo></math></span> 10<span><math><mo>%</mo></math></span> above the coulomb barrier, both projectiles exhibit comparable NCNF contributions. However, at projectile energies <span><math><mo>≥</mo></math></span> 30<span><math><mo>%</mo></math></span> above the Coulomb barrier, <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O exhibits a significantly higher NCNF contribution as compare to <span><math><msup><mrow></mrow><mn>16</mn></msup></math></span>O. Further, the critical angular momentum increases exponentially with both Z<span><math><msub><mrow></mrow><mi>P</mi></msub></math></span>Z<span><math><msub><mrow></mrow><mi>T</mi></msub></math></span> and <span><math><msubsup><mi>μ</mi><mrow><mi>c</mi><mi>m</mi></mrow><mi>T</mi></msubsup></math></span>, establishing these parameters as key factors in onset of the NCNF process. Additionally, the study finds also that fusion suppression depends on projectile’s <span><math><mi>α</mi></math></span>-separation energy. A generalized expression is proposed to estimate NCNF contributions for reactions involving both weakly and strongly bound projectiles on <span><math><msup><mrow></mrow><mn>154</mn></msup></math></span>Sm.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1064 ","pages":"Article 123245"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compound and non-compound nuclear fusion using forward recoil range distributions of evaporation residues produced in 18O+154Sm system\",\"authors\":\"Rajesh K. Sahoo , Dharmendra Singh , Amritraj Mahato , Pankaj K. Giri , Nitin Sharma , Lupteindu Chhura , Rahul Mahato , Sneha B. Linda , Harish Kumar , Suhail A. Tali , Rahbar Ali , M. Afzal Ansari , R. Kumar , S. Muralithar , R.P. Singh\",\"doi\":\"10.1016/j.nuclphysa.2025.123245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study investigates partial linear momentum transfer in the non-compound nuclear fusion (NCNF) process by analyzing the forward recoil range distributions (FRRDs) of evaporation residues (ERs) produced in the <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O+<span><math><msup><mrow></mrow><mn>154</mn></msup></math></span>Sm system at projectile energy <span><math><mo>≈</mo></math></span> 5.27 MeV/nucleon. The ERs formed through xn and pxn evaporation channels exhibit single-peaked gaussian distributions in forward recoil ranges while their range-integrated cross sections alines well with theoretical prediction of PACE-4 code. These results show the signature of complete momentum transfer and formation of a compound nucleus <span><math><msup><mrow></mrow><mn>172</mn></msup></math></span>Yb*. However, ERs produced via <span><math><mi>α</mi></math></span> spectator channels shows single peaked gaussian distribution in forward recoil ranges but with a shorter mean ranges and larger cross sections than theoretical predictions. This result suggests that partial momentum transfer results from the breakup of <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O into <span><math><msup><mrow></mrow><mn>14</mn></msup></math></span>C+<span><math><mi>α</mi></math></span>, contributing to the formation of an intermediate <span><math><msup><mrow></mrow><mn>168</mn></msup></math></span>Er* composite system. To investigate isotopic effects on NCNF dynamics, reactions induced by <span><math><msup><mrow></mrow><mn>16</mn></msup></math></span>O and <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O projectiles were compared within the framework of Z<span><math><msub><mrow></mrow><mi>P</mi></msub></math></span>Z<span><math><msub><mrow></mrow><mi>T</mi></msub></math></span> and total asymmetry (<span><math><msubsup><mi>μ</mi><mrow><mi>c</mi><mi>m</mi></mrow><mi>T</mi></msubsup></math></span>). At energies <span><math><mo>≈</mo></math></span> 10<span><math><mo>%</mo></math></span> above the coulomb barrier, both projectiles exhibit comparable NCNF contributions. However, at projectile energies <span><math><mo>≥</mo></math></span> 30<span><math><mo>%</mo></math></span> above the Coulomb barrier, <span><math><msup><mrow></mrow><mn>18</mn></msup></math></span>O exhibits a significantly higher NCNF contribution as compare to <span><math><msup><mrow></mrow><mn>16</mn></msup></math></span>O. Further, the critical angular momentum increases exponentially with both Z<span><math><msub><mrow></mrow><mi>P</mi></msub></math></span>Z<span><math><msub><mrow></mrow><mi>T</mi></msub></math></span> and <span><math><msubsup><mi>μ</mi><mrow><mi>c</mi><mi>m</mi></mrow><mi>T</mi></msubsup></math></span>, establishing these parameters as key factors in onset of the NCNF process. Additionally, the study finds also that fusion suppression depends on projectile’s <span><math><mi>α</mi></math></span>-separation energy. A generalized expression is proposed to estimate NCNF contributions for reactions involving both weakly and strongly bound projectiles on <span><math><msup><mrow></mrow><mn>154</mn></msup></math></span>Sm.</div></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1064 \",\"pages\":\"Article 123245\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947425002313\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425002313","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Compound and non-compound nuclear fusion using forward recoil range distributions of evaporation residues produced in 18O+154Sm system
The study investigates partial linear momentum transfer in the non-compound nuclear fusion (NCNF) process by analyzing the forward recoil range distributions (FRRDs) of evaporation residues (ERs) produced in the O+Sm system at projectile energy 5.27 MeV/nucleon. The ERs formed through xn and pxn evaporation channels exhibit single-peaked gaussian distributions in forward recoil ranges while their range-integrated cross sections alines well with theoretical prediction of PACE-4 code. These results show the signature of complete momentum transfer and formation of a compound nucleus Yb*. However, ERs produced via spectator channels shows single peaked gaussian distribution in forward recoil ranges but with a shorter mean ranges and larger cross sections than theoretical predictions. This result suggests that partial momentum transfer results from the breakup of O into C+, contributing to the formation of an intermediate Er* composite system. To investigate isotopic effects on NCNF dynamics, reactions induced by O and O projectiles were compared within the framework of ZZ and total asymmetry (). At energies 10 above the coulomb barrier, both projectiles exhibit comparable NCNF contributions. However, at projectile energies 30 above the Coulomb barrier, O exhibits a significantly higher NCNF contribution as compare to O. Further, the critical angular momentum increases exponentially with both ZZ and , establishing these parameters as key factors in onset of the NCNF process. Additionally, the study finds also that fusion suppression depends on projectile’s -separation energy. A generalized expression is proposed to estimate NCNF contributions for reactions involving both weakly and strongly bound projectiles on Sm.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.