Co0与Cu11In9金属间化合物的协同作用增强了CO2加氢制甲醇的催化性能

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Wei Liu , Xiaoshen Li , Shaohui Xiong , Xueyang Jiang , Jiayan Yan , Xiang Duan , Yingtian Zhang , Qingpeng Cheng , Ye Tian , Xingang Li
{"title":"Co0与Cu11In9金属间化合物的协同作用增强了CO2加氢制甲醇的催化性能","authors":"Wei Liu ,&nbsp;Xiaoshen Li ,&nbsp;Shaohui Xiong ,&nbsp;Xueyang Jiang ,&nbsp;Jiayan Yan ,&nbsp;Xiang Duan ,&nbsp;Yingtian Zhang ,&nbsp;Qingpeng Cheng ,&nbsp;Ye Tian ,&nbsp;Xingang Li","doi":"10.1016/j.cjche.2025.06.023","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> hydrogenation to methanol is a critical technology for hydrogen energy conversion and a promising approach to mitigate the energy crisis and greenhouse effect. However, developing highly selective catalysts remains a major challenge for its practical application. Herein, we synthesize an efficient CoCuInO-r catalyst with Cu<sub>11</sub>In<sub>9</sub> and Co<sup>0</sup> dual sites on In<sub>2</sub>O<sub>3</sub> <em>via</em> a sol-gel method. The Cu<sub>11</sub>In<sub>9</sub> intermetallic compound enhances H<sub>2</sub> adsorption capacity and strength, and increases oxygen vacancy concentration on the catalyst surface, thereby improving CO<sub>2</sub> activation and hydrogenation efficiency. Meanwhile, Co<sup>0</sup> suppresses the desorption of the ∗CO species, facilitating its further hydrogenation to methanol. <em>In-situ</em> DRIFTS experiments indicate that the CO<sub>2</sub> hydrogenation to methanol over CoCuInO-r follows the formate pathway. Compared with CuInO-r (containing Cu<sub>11</sub>In<sub>9</sub> on In<sub>2</sub>O<sub>3</sub>), CoCuInO-r exhibits a ∼20% increase in methanol selectivity and a 2-fold higher methanol space-time yield, reaching 7.68 mmol·g<sup>−1</sup>·h<sup>−1</sup> at 300 °C and 4 MPa.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"86 ","pages":"Pages 25-33"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of Co0 with Cu11In9 intermetallic compound enhancing catalytic performance of CO2 hydrogenation to methanol\",\"authors\":\"Wei Liu ,&nbsp;Xiaoshen Li ,&nbsp;Shaohui Xiong ,&nbsp;Xueyang Jiang ,&nbsp;Jiayan Yan ,&nbsp;Xiang Duan ,&nbsp;Yingtian Zhang ,&nbsp;Qingpeng Cheng ,&nbsp;Ye Tian ,&nbsp;Xingang Li\",\"doi\":\"10.1016/j.cjche.2025.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub> hydrogenation to methanol is a critical technology for hydrogen energy conversion and a promising approach to mitigate the energy crisis and greenhouse effect. However, developing highly selective catalysts remains a major challenge for its practical application. Herein, we synthesize an efficient CoCuInO-r catalyst with Cu<sub>11</sub>In<sub>9</sub> and Co<sup>0</sup> dual sites on In<sub>2</sub>O<sub>3</sub> <em>via</em> a sol-gel method. The Cu<sub>11</sub>In<sub>9</sub> intermetallic compound enhances H<sub>2</sub> adsorption capacity and strength, and increases oxygen vacancy concentration on the catalyst surface, thereby improving CO<sub>2</sub> activation and hydrogenation efficiency. Meanwhile, Co<sup>0</sup> suppresses the desorption of the ∗CO species, facilitating its further hydrogenation to methanol. <em>In-situ</em> DRIFTS experiments indicate that the CO<sub>2</sub> hydrogenation to methanol over CoCuInO-r follows the formate pathway. Compared with CuInO-r (containing Cu<sub>11</sub>In<sub>9</sub> on In<sub>2</sub>O<sub>3</sub>), CoCuInO-r exhibits a ∼20% increase in methanol selectivity and a 2-fold higher methanol space-time yield, reaching 7.68 mmol·g<sup>−1</sup>·h<sup>−1</sup> at 300 °C and 4 MPa.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":\"86 \",\"pages\":\"Pages 25-33\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954125002988\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125002988","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳加氢制甲醇是氢能转化的关键技术,也是缓解能源危机和温室效应的重要途径。然而,开发高选择性催化剂仍然是其实际应用的主要挑战。本文采用溶胶-凝胶法在In2O3上合成了Cu11In9和Co0双位点的高效CoCuInO-r催化剂。Cu11In9金属间化合物增强了H2的吸附能力和强度,增加了催化剂表面氧空位浓度,从而提高了CO2的活化和加氢效率。同时,Co0抑制了* CO的解吸,使其进一步加氢生成甲醇。原位DRIFTS实验表明,CoCuInO-r上CO2加氢制甲醇遵循甲酸途径。与Cu11In9在In2O3上的cucuino -r相比,CoCuInO-r的甲醇选择性提高了约20%,甲醇空时产率提高了2倍,在300℃、4 MPa条件下达到7.68 mmol·g−1·h−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic effect of Co0 with Cu11In9 intermetallic compound enhancing catalytic performance of CO2 hydrogenation to methanol

Synergistic effect of Co0 with Cu11In9 intermetallic compound enhancing catalytic performance of CO2 hydrogenation to methanol
CO2 hydrogenation to methanol is a critical technology for hydrogen energy conversion and a promising approach to mitigate the energy crisis and greenhouse effect. However, developing highly selective catalysts remains a major challenge for its practical application. Herein, we synthesize an efficient CoCuInO-r catalyst with Cu11In9 and Co0 dual sites on In2O3 via a sol-gel method. The Cu11In9 intermetallic compound enhances H2 adsorption capacity and strength, and increases oxygen vacancy concentration on the catalyst surface, thereby improving CO2 activation and hydrogenation efficiency. Meanwhile, Co0 suppresses the desorption of the ∗CO species, facilitating its further hydrogenation to methanol. In-situ DRIFTS experiments indicate that the CO2 hydrogenation to methanol over CoCuInO-r follows the formate pathway. Compared with CuInO-r (containing Cu11In9 on In2O3), CoCuInO-r exhibits a ∼20% increase in methanol selectivity and a 2-fold higher methanol space-time yield, reaching 7.68 mmol·g−1·h−1 at 300 °C and 4 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信