应变工程Z-scheme γ-GeS/BlueP异质结构用于高效光电辅助制氢

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yuntao Hu , Hao Huang , Guangting Zhao , Fu Chen , Xiaojun Zhu , Ling-Ling Wang , Yufan Hu , Quan Li
{"title":"应变工程Z-scheme γ-GeS/BlueP异质结构用于高效光电辅助制氢","authors":"Yuntao Hu ,&nbsp;Hao Huang ,&nbsp;Guangting Zhao ,&nbsp;Fu Chen ,&nbsp;Xiaojun Zhu ,&nbsp;Ling-Ling Wang ,&nbsp;Yufan Hu ,&nbsp;Quan Li","doi":"10.1016/j.ijhydene.2025.151844","DOIUrl":null,"url":null,"abstract":"<div><div>The purposeful design of vertically stacked van der Waals heterostructures with high solar energy conversion efficiency offers a promising route toward carbon neutrality. Our first-principles calculations show that the γ-GeS/BlueP heterojunction is a narrow bandgap semiconductor with high carrier mobilities and strong absorption across the visible region. Modest in-plane strain transforms the heterojunction from type-I to type-II band alignment and enables overall water splitting through a Z-scheme photocatalytic mechanism. At −3 % biaxial strain, the predicted solar-to-hydrogen efficiency (η<sub>STH</sub>) reaches 12.21 % and the power conversion efficiency (PCE) reaches 15.08 %. Increasing the compression strain to −4 % raises η<sub>STH</sub> to 18.06 % and yields a substantially larger η<sub>STH</sub>/PCE ratio than at −3 %. Furthermore, the hydrogen adsorption free energy (ΔG<sub>H∗</sub>) for hydrogen evolution reaction (HER) decreases sharply from 1.14 eV at −3 % strain to 0.46 eV at −4 %, indicating markedly enhanced HER activity. Compressive strain also increases hole mobility and strengthens in-plane anisotropy, which facilitates efficient separation and transport of photoexcited electron-hole pairs. These strain-tunable properties highlight γ-GeS/BlueP as a potential bifunctional platform for solar energy conversion, particularly for photovoltaic-assisted hydrogen production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"182 ","pages":"Article 151844"},"PeriodicalIF":8.3000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-engineered Z-scheme γ-GeS/BlueP heterostructures for efficient photovoltaic-assisted hydrogen generation\",\"authors\":\"Yuntao Hu ,&nbsp;Hao Huang ,&nbsp;Guangting Zhao ,&nbsp;Fu Chen ,&nbsp;Xiaojun Zhu ,&nbsp;Ling-Ling Wang ,&nbsp;Yufan Hu ,&nbsp;Quan Li\",\"doi\":\"10.1016/j.ijhydene.2025.151844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purposeful design of vertically stacked van der Waals heterostructures with high solar energy conversion efficiency offers a promising route toward carbon neutrality. Our first-principles calculations show that the γ-GeS/BlueP heterojunction is a narrow bandgap semiconductor with high carrier mobilities and strong absorption across the visible region. Modest in-plane strain transforms the heterojunction from type-I to type-II band alignment and enables overall water splitting through a Z-scheme photocatalytic mechanism. At −3 % biaxial strain, the predicted solar-to-hydrogen efficiency (η<sub>STH</sub>) reaches 12.21 % and the power conversion efficiency (PCE) reaches 15.08 %. Increasing the compression strain to −4 % raises η<sub>STH</sub> to 18.06 % and yields a substantially larger η<sub>STH</sub>/PCE ratio than at −3 %. Furthermore, the hydrogen adsorption free energy (ΔG<sub>H∗</sub>) for hydrogen evolution reaction (HER) decreases sharply from 1.14 eV at −3 % strain to 0.46 eV at −4 %, indicating markedly enhanced HER activity. Compressive strain also increases hole mobility and strengthens in-plane anisotropy, which facilitates efficient separation and transport of photoexcited electron-hole pairs. These strain-tunable properties highlight γ-GeS/BlueP as a potential bifunctional platform for solar energy conversion, particularly for photovoltaic-assisted hydrogen production.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"182 \",\"pages\":\"Article 151844\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925048475\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925048475","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有高太阳能转换效率的垂直堆叠范德华异质结构的设计为实现碳中和提供了一条有希望的途径。我们的第一性原理计算表明,γ-GeS/BlueP异质结是一种窄带隙半导体,具有高载流子迁移率和强可见光吸收。适度的平面内应变将异质结从i型转变为ii型带对准,并通过z型光催化机制实现整体水分裂。在- 3%的双轴应变下,预测的太阳能制氢效率(ηSTH)达到12.21%,功率转换效率(PCE)达到15.08%。当压缩应变增加到- 4%时,ηSTH提高到18.06%,ηSTH/PCE比明显大于- 3%时。此外,析氢反应(HER)的氢吸附自由能(ΔGH∗)从−3%时的1.14 eV急剧下降到−4%时的0.46 eV,表明HER活性明显增强。压缩应变还增加了空穴迁移率,增强了面内各向异性,有利于光激发电子-空穴对的有效分离和输运。这些应变可调的特性突出了γ-GeS/BlueP作为太阳能转换的潜在双功能平台,特别是在光伏辅助制氢方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-engineered Z-scheme γ-GeS/BlueP heterostructures for efficient photovoltaic-assisted hydrogen generation

Strain-engineered Z-scheme γ-GeS/BlueP heterostructures for efficient photovoltaic-assisted hydrogen generation
The purposeful design of vertically stacked van der Waals heterostructures with high solar energy conversion efficiency offers a promising route toward carbon neutrality. Our first-principles calculations show that the γ-GeS/BlueP heterojunction is a narrow bandgap semiconductor with high carrier mobilities and strong absorption across the visible region. Modest in-plane strain transforms the heterojunction from type-I to type-II band alignment and enables overall water splitting through a Z-scheme photocatalytic mechanism. At −3 % biaxial strain, the predicted solar-to-hydrogen efficiency (ηSTH) reaches 12.21 % and the power conversion efficiency (PCE) reaches 15.08 %. Increasing the compression strain to −4 % raises ηSTH to 18.06 % and yields a substantially larger ηSTH/PCE ratio than at −3 %. Furthermore, the hydrogen adsorption free energy (ΔGH∗) for hydrogen evolution reaction (HER) decreases sharply from 1.14 eV at −3 % strain to 0.46 eV at −4 %, indicating markedly enhanced HER activity. Compressive strain also increases hole mobility and strengthens in-plane anisotropy, which facilitates efficient separation and transport of photoexcited electron-hole pairs. These strain-tunable properties highlight γ-GeS/BlueP as a potential bifunctional platform for solar energy conversion, particularly for photovoltaic-assisted hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信