欧拉图的路径分解

IF 0.7 3区 数学 Q2 MATHEMATICS
Yanan Chu , Yan Wang
{"title":"欧拉图的路径分解","authors":"Yanan Chu ,&nbsp;Yan Wang","doi":"10.1016/j.disc.2025.114830","DOIUrl":null,"url":null,"abstract":"<div><div>Gallai's conjecture asserts that every connected graph on <em>n</em> vertices can be decomposed into <span><math><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> paths. For general graphs (possibly disconnected), it was proved that every graph on <em>n</em> vertices can be decomposed into <span><math><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> paths. This is also best possible (consider the graphs consisting of vertex-disjoint triangles). Lovász showed that every <em>n</em>-vertex graph with at most one vertex of even degree can be decomposed into <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> paths. However, Gallai's conjecture is difficult for graphs with many vertices of even degrees. Favaron and Kouider verified Gallai's conjecture for all Eulerian graphs with maximum degree at most 4. In this paper, we show if <em>G</em> is an Eulerian graph on <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> vertices and the distance between any two triangles in <em>G</em> is at least 3, then <em>G</em> can be decomposed into at most <span><math><mfrac><mrow><mn>3</mn><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> paths.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114830"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path decompositions of Eulerian graphs\",\"authors\":\"Yanan Chu ,&nbsp;Yan Wang\",\"doi\":\"10.1016/j.disc.2025.114830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gallai's conjecture asserts that every connected graph on <em>n</em> vertices can be decomposed into <span><math><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> paths. For general graphs (possibly disconnected), it was proved that every graph on <em>n</em> vertices can be decomposed into <span><math><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> paths. This is also best possible (consider the graphs consisting of vertex-disjoint triangles). Lovász showed that every <em>n</em>-vertex graph with at most one vertex of even degree can be decomposed into <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> paths. However, Gallai's conjecture is difficult for graphs with many vertices of even degrees. Favaron and Kouider verified Gallai's conjecture for all Eulerian graphs with maximum degree at most 4. In this paper, we show if <em>G</em> is an Eulerian graph on <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> vertices and the distance between any two triangles in <em>G</em> is at least 3, then <em>G</em> can be decomposed into at most <span><math><mfrac><mrow><mn>3</mn><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> paths.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114830\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004388\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004388","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Gallai猜想断言,n个顶点上的每一个连通图都可以分解成n+12条路径。对于一般图(可能是不连通的),证明了n个顶点上的每个图都可以分解成2n3条路径。这也是最好的可能(考虑由顶点不相交的三角形组成的图)。Lovász证明了每个最多有一个偶数度顶点的n顶点图都可以分解成n2条路径。然而,对于具有许多偶数度顶点的图,Gallai的猜想是困难的。Favaron和Kouider对所有最大度不超过4的欧拉图验证了Gallai的猜想。在本文中,我们证明了如果G是一个有n≥4个顶点的欧拉图,并且G中任意两个三角形之间的距离至少为3,则G可以被分解为最多3n5条路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path decompositions of Eulerian graphs
Gallai's conjecture asserts that every connected graph on n vertices can be decomposed into n+12 paths. For general graphs (possibly disconnected), it was proved that every graph on n vertices can be decomposed into 2n3 paths. This is also best possible (consider the graphs consisting of vertex-disjoint triangles). Lovász showed that every n-vertex graph with at most one vertex of even degree can be decomposed into n2 paths. However, Gallai's conjecture is difficult for graphs with many vertices of even degrees. Favaron and Kouider verified Gallai's conjecture for all Eulerian graphs with maximum degree at most 4. In this paper, we show if G is an Eulerian graph on n4 vertices and the distance between any two triangles in G is at least 3, then G can be decomposed into at most 3n5 paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信