{"title":"稀疏超图着色的应用","authors":"Felix Christian Clemen","doi":"10.1016/j.disc.2025.114822","DOIUrl":null,"url":null,"abstract":"<div><div>Many problems in extremal combinatorics can be reduced to determining the independence number of a specific auxiliary hypergraph. We present two such problems, one from discrete geometry and one from hypergraph Turán theory. Using results on hypergraph colorings by Cooper-Mubayi and Li-Postle, we demonstrate that for those two problems the trivial lower bound on the independence number can be improved upon:<ul><li><span>•</span><span><div>Erdős, Graham, Ruzsa and Taylor asked to determine the largest size, denoted by <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, of a subset <em>P</em> of the grid <span><math><msup><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that every pair of points in <em>P</em> span a different slope. Improving on a lower bound by Zhang from 1993, we show that<span><span><span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo></mo><mi>n</mi></mrow></mfrac><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li><li><span>•</span><span><div>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-graph with <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices and 3 edges. Recently, Sidorenko proved the following lower bounds for the Turán density of this <em>r</em>-graph: <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for every <em>r</em>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We present an improved asymptotic bound:<span><span><span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo></mo><mi>r</mi><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li></ul></div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114822"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of sparse hypergraph colorings\",\"authors\":\"Felix Christian Clemen\",\"doi\":\"10.1016/j.disc.2025.114822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many problems in extremal combinatorics can be reduced to determining the independence number of a specific auxiliary hypergraph. We present two such problems, one from discrete geometry and one from hypergraph Turán theory. Using results on hypergraph colorings by Cooper-Mubayi and Li-Postle, we demonstrate that for those two problems the trivial lower bound on the independence number can be improved upon:<ul><li><span>•</span><span><div>Erdős, Graham, Ruzsa and Taylor asked to determine the largest size, denoted by <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, of a subset <em>P</em> of the grid <span><math><msup><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that every pair of points in <em>P</em> span a different slope. Improving on a lower bound by Zhang from 1993, we show that<span><span><span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo></mo><mi>n</mi></mrow></mfrac><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li><li><span>•</span><span><div>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-graph with <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices and 3 edges. Recently, Sidorenko proved the following lower bounds for the Turán density of this <em>r</em>-graph: <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for every <em>r</em>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We present an improved asymptotic bound:<span><span><span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo></mo><mi>r</mi><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li></ul></div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114822\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004303\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004303","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Many problems in extremal combinatorics can be reduced to determining the independence number of a specific auxiliary hypergraph. We present two such problems, one from discrete geometry and one from hypergraph Turán theory. Using results on hypergraph colorings by Cooper-Mubayi and Li-Postle, we demonstrate that for those two problems the trivial lower bound on the independence number can be improved upon:
•
Erdős, Graham, Ruzsa and Taylor asked to determine the largest size, denoted by , of a subset P of the grid such that every pair of points in P span a different slope. Improving on a lower bound by Zhang from 1993, we show that
•
Let denote an r-graph with vertices and 3 edges. Recently, Sidorenko proved the following lower bounds for the Turán density of this r-graph: for every r, and . We present an improved asymptotic bound:
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.