稀疏超图着色的应用

IF 0.7 3区 数学 Q2 MATHEMATICS
Felix Christian Clemen
{"title":"稀疏超图着色的应用","authors":"Felix Christian Clemen","doi":"10.1016/j.disc.2025.114822","DOIUrl":null,"url":null,"abstract":"<div><div>Many problems in extremal combinatorics can be reduced to determining the independence number of a specific auxiliary hypergraph. We present two such problems, one from discrete geometry and one from hypergraph Turán theory. Using results on hypergraph colorings by Cooper-Mubayi and Li-Postle, we demonstrate that for those two problems the trivial lower bound on the independence number can be improved upon:<ul><li><span>•</span><span><div>Erdős, Graham, Ruzsa and Taylor asked to determine the largest size, denoted by <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, of a subset <em>P</em> of the grid <span><math><msup><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that every pair of points in <em>P</em> span a different slope. Improving on a lower bound by Zhang from 1993, we show that<span><span><span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>⁡</mo><mi>n</mi></mrow></mfrac><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li><li><span>•</span><span><div>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-graph with <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices and 3 edges. Recently, Sidorenko proved the following lower bounds for the Turán density of this <em>r</em>-graph: <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for every <em>r</em>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We present an improved asymptotic bound:<span><span><span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⁡</mo><mi>r</mi><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li></ul></div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114822"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of sparse hypergraph colorings\",\"authors\":\"Felix Christian Clemen\",\"doi\":\"10.1016/j.disc.2025.114822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many problems in extremal combinatorics can be reduced to determining the independence number of a specific auxiliary hypergraph. We present two such problems, one from discrete geometry and one from hypergraph Turán theory. Using results on hypergraph colorings by Cooper-Mubayi and Li-Postle, we demonstrate that for those two problems the trivial lower bound on the independence number can be improved upon:<ul><li><span>•</span><span><div>Erdős, Graham, Ruzsa and Taylor asked to determine the largest size, denoted by <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, of a subset <em>P</em> of the grid <span><math><msup><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that every pair of points in <em>P</em> span a different slope. Improving on a lower bound by Zhang from 1993, we show that<span><span><span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>⁡</mo><mi>n</mi></mrow></mfrac><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li><li><span>•</span><span><div>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-graph with <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices and 3 edges. Recently, Sidorenko proved the following lower bounds for the Turán density of this <em>r</em>-graph: <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for every <em>r</em>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We present an improved asymptotic bound:<span><span><span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⁡</mo><mi>r</mi><mo>)</mo></mrow><mo>.</mo></math></span></span></span></div></span></li></ul></div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114822\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004303\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004303","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

极值组合中的许多问题可以归结为确定一个特定辅助超图的独立数。我们提出了两个这样的问题,一个来自离散几何,一个来自超图Turán理论。利用Cooper-Mubayi和Li-Postle在超图着色上的结果,我们证明了对于这两个问题,独立数的平凡下界可以改进:•Erdős, Graham, Ruzsa和Taylor要求确定网格[n]2的子集P的最大尺寸,用g(n)表示,使得P中的每对点都张成不同的斜率。改进了Zhang从1993年提出的下界,我们证明了g(n)=Ω(n2/3(log (log))1/3log(1/3))。•设H3r表示具有r+1个顶点和3条边的r-图。最近,Sidorenko证明了该r-graph的Turán密度的下界:π(H3r)≥r−2,且π(H3r)≥(1.7215−o(1))r−2。我们给出了一个改进的渐近界:π(H3r)=Ω(r−2log1/2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of sparse hypergraph colorings
Many problems in extremal combinatorics can be reduced to determining the independence number of a specific auxiliary hypergraph. We present two such problems, one from discrete geometry and one from hypergraph Turán theory. Using results on hypergraph colorings by Cooper-Mubayi and Li-Postle, we demonstrate that for those two problems the trivial lower bound on the independence number can be improved upon:
  • Erdős, Graham, Ruzsa and Taylor asked to determine the largest size, denoted by g(n), of a subset P of the grid [n]2 such that every pair of points in P span a different slope. Improving on a lower bound by Zhang from 1993, we show thatg(n)=Ω(n2/3(loglogn)1/3log1/3n).
  • Let H3r denote an r-graph with r+1 vertices and 3 edges. Recently, Sidorenko proved the following lower bounds for the Turán density of this r-graph: π(H3r)r2 for every r, and π(H3r)(1.7215o(1))r2. We present an improved asymptotic bound:π(H3r)=Ω(r2log1/2r).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信