Ehsan Akbari-Kharaji , Majid Shafaie , Elizabeth Sackett , John Wood , Milos B. Djukic , Shirin Alexander
{"title":"氢屏障涂层:应用与评价","authors":"Ehsan Akbari-Kharaji , Majid Shafaie , Elizabeth Sackett , John Wood , Milos B. Djukic , Shirin Alexander","doi":"10.1016/j.ijhydene.2025.151666","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogen-rich environments. This review critically explores hydrogen barrier coatings (HBCs), polymeric, metallic, ceramic, and composite, their application and assessment, focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also, coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized, highlighting the pressing need for durable, scalable, and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour, critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production, storage, and transport infrastructure.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"180 ","pages":"Article 151666"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen barrier coatings: Application and assessment\",\"authors\":\"Ehsan Akbari-Kharaji , Majid Shafaie , Elizabeth Sackett , John Wood , Milos B. Djukic , Shirin Alexander\",\"doi\":\"10.1016/j.ijhydene.2025.151666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogen-rich environments. This review critically explores hydrogen barrier coatings (HBCs), polymeric, metallic, ceramic, and composite, their application and assessment, focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also, coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized, highlighting the pressing need for durable, scalable, and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour, critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production, storage, and transport infrastructure.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"180 \",\"pages\":\"Article 151666\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925046683\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925046683","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydrogen barrier coatings: Application and assessment
Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogen-rich environments. This review critically explores hydrogen barrier coatings (HBCs), polymeric, metallic, ceramic, and composite, their application and assessment, focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also, coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized, highlighting the pressing need for durable, scalable, and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour, critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production, storage, and transport infrastructure.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.