高熵设计驱动了多尺度梯度不锈钢接头的强化和增韧

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Li , Yingzhe Li , Wenshan Guo , Jianwei Dong , Qinglong Wu , Yang Yang , Zhen Luo
{"title":"高熵设计驱动了多尺度梯度不锈钢接头的强化和增韧","authors":"Zhen Li ,&nbsp;Yingzhe Li ,&nbsp;Wenshan Guo ,&nbsp;Jianwei Dong ,&nbsp;Qinglong Wu ,&nbsp;Yang Yang ,&nbsp;Zhen Luo","doi":"10.1016/j.msea.2025.149188","DOIUrl":null,"url":null,"abstract":"<div><div>The development of alloys with both high strength and ductility remains a critical challenge. Here, a multiscale gradient-structured joint was fabricated by combining alloying with a two-pass laser welding strategy based on additive manufacturing principles. Using AlCoCrNiCu<sub>0.5</sub>Ti<sub>x</sub> (x = 0.5, 1) high-entropy alloys with 304L stainless steel, the joint exhibited columnar–equiaxed–columnar grains and compositional heterogeneity arising from varied heat input and dilution. Ti enrichment in the second pass promoted an FCC-to-BCC transition, establishing a phase gradient across the weld. This architecture enabled a remarkable strength–ductility synergy, achieving a yield strength of 368.8 MPa, ultimate tensile strength of 741.3 MPa, and elongation of 75 %, surpassing conventional 304L welds. Fracture occurred in the base metal, with dimpled morphology confirming ductile failure. The superior performance stems from multi-mechanism strengthening, particularly back-stress hardening from geometrically necessary dislocations, together with enhanced strain-hardening capacity imparted by the gradient structure. By utilizing the spatial design flexibility of additive manufacturing, this work presents a novel strategy for fabricating multiscale gradient structures, offering a promising pathway toward advanced structural materials with exceptional mechanical synergy.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"947 ","pages":"Article 149188"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High entropy design driven the strengthening and toughening of multi-scale gradient stainless steel joints\",\"authors\":\"Zhen Li ,&nbsp;Yingzhe Li ,&nbsp;Wenshan Guo ,&nbsp;Jianwei Dong ,&nbsp;Qinglong Wu ,&nbsp;Yang Yang ,&nbsp;Zhen Luo\",\"doi\":\"10.1016/j.msea.2025.149188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of alloys with both high strength and ductility remains a critical challenge. Here, a multiscale gradient-structured joint was fabricated by combining alloying with a two-pass laser welding strategy based on additive manufacturing principles. Using AlCoCrNiCu<sub>0.5</sub>Ti<sub>x</sub> (x = 0.5, 1) high-entropy alloys with 304L stainless steel, the joint exhibited columnar–equiaxed–columnar grains and compositional heterogeneity arising from varied heat input and dilution. Ti enrichment in the second pass promoted an FCC-to-BCC transition, establishing a phase gradient across the weld. This architecture enabled a remarkable strength–ductility synergy, achieving a yield strength of 368.8 MPa, ultimate tensile strength of 741.3 MPa, and elongation of 75 %, surpassing conventional 304L welds. Fracture occurred in the base metal, with dimpled morphology confirming ductile failure. The superior performance stems from multi-mechanism strengthening, particularly back-stress hardening from geometrically necessary dislocations, together with enhanced strain-hardening capacity imparted by the gradient structure. By utilizing the spatial design flexibility of additive manufacturing, this work presents a novel strategy for fabricating multiscale gradient structures, offering a promising pathway toward advanced structural materials with exceptional mechanical synergy.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"947 \",\"pages\":\"Article 149188\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325014121\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325014121","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发具有高强度和高延展性的合金仍然是一个严峻的挑战。采用基于增材制造原理的两道激光焊接策略,结合合金化工艺,制备了多尺度梯度结构接头。使用AlCoCrNiCu0.5Tix (x = 0.5, 1)高熵合金与304L不锈钢结合,接头呈现柱状-等轴-柱状晶粒,且由于不同的热输入和稀释,接头的成分呈现非均匀性。第二道的Ti富集促进了fcc到bcc的转变,在焊缝上建立了相梯度。这种结构实现了显著的强度-延性协同,屈服强度为368.8 MPa,极限抗拉强度为741.3 MPa,伸长率为75%,超过了传统的304L焊缝。断裂发生在母材上,呈韧窝状,证实了韧性破坏。优异的性能源于多机制强化,特别是由几何必要位错引起的背应力硬化,以及梯度结构赋予的增强的应变硬化能力。通过利用增材制造的空间设计灵活性,本研究提出了一种制造多尺度梯度结构的新策略,为具有特殊机械协同作用的先进结构材料提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High entropy design driven the strengthening and toughening of multi-scale gradient stainless steel joints
The development of alloys with both high strength and ductility remains a critical challenge. Here, a multiscale gradient-structured joint was fabricated by combining alloying with a two-pass laser welding strategy based on additive manufacturing principles. Using AlCoCrNiCu0.5Tix (x = 0.5, 1) high-entropy alloys with 304L stainless steel, the joint exhibited columnar–equiaxed–columnar grains and compositional heterogeneity arising from varied heat input and dilution. Ti enrichment in the second pass promoted an FCC-to-BCC transition, establishing a phase gradient across the weld. This architecture enabled a remarkable strength–ductility synergy, achieving a yield strength of 368.8 MPa, ultimate tensile strength of 741.3 MPa, and elongation of 75 %, surpassing conventional 304L welds. Fracture occurred in the base metal, with dimpled morphology confirming ductile failure. The superior performance stems from multi-mechanism strengthening, particularly back-stress hardening from geometrically necessary dislocations, together with enhanced strain-hardening capacity imparted by the gradient structure. By utilizing the spatial design flexibility of additive manufacturing, this work presents a novel strategy for fabricating multiscale gradient structures, offering a promising pathway toward advanced structural materials with exceptional mechanical synergy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信