固体氧化物电解池中可调合成气组成的H2O-CO2共电解反应途径的揭示

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Shuidan Gu , Shiming Hu , Caichen Yang , Yunfeng Tian , Kaisheng Xia , Jian Pu , Bo Chi
{"title":"固体氧化物电解池中可调合成气组成的H2O-CO2共电解反应途径的揭示","authors":"Shuidan Gu ,&nbsp;Shiming Hu ,&nbsp;Caichen Yang ,&nbsp;Yunfeng Tian ,&nbsp;Kaisheng Xia ,&nbsp;Jian Pu ,&nbsp;Bo Chi","doi":"10.1016/j.jpowsour.2025.238500","DOIUrl":null,"url":null,"abstract":"<div><div>H<sub>2</sub>O–CO<sub>2</sub> co-electrolysis in solid oxide electrolysis cells (SOECs) represents an efficient approach to syngas (H<sub>2</sub> + CO) production, enabling downstream synthesis of carbon-neutral fuels. However, complex competing pathways—particularly the poorly understood CO<sub>2</sub> reduction mechanism—hinder precise control of syngas composition. Here, we experimentally determine the onset voltage of CO<sub>2</sub> electrolysis under co-electrolysis conditions, addressing existing gaps in the early literature. By coupling electrochemical analysis with outlet gas analysis, two voltage-dependent regimes are identified: at low voltages, CO is primarily generated via the thermochemical reverse water-gas shift (RWGS) reaction, while at high voltages, both RWGS and CO<sub>2</sub> electrolysis occur, with RWGS remaining dominant. The onset voltages for CO<sub>2</sub> electrolysis are precisely determined as 0.9 V, 1.1 V, and 1.2 V for atmospheres of 20 % H<sub>2</sub>O–80 % CO<sub>2</sub>, 50 % H<sub>2</sub>O–50 % CO<sub>2</sub>, and 80 % H<sub>2</sub>O–20 % CO<sub>2</sub>, respectively, marking the transition from pure H<sub>2</sub>O electrolysis to H<sub>2</sub>O–CO<sub>2</sub> co-electrolysis. Feed composition is the dominant factor influencing the onset voltage and syngas selectivity, while operating parameters such as flow rate and temperature also have noticeable effects, enabling wide H<sub>2</sub>/CO range ratio (1.09–5.40). These results provide new insights into the CO<sub>2</sub> reduction pathway and offer guidance for the rational design of SOEC operation for controllable syngas production.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"660 ","pages":"Article 238500"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling reaction pathways in H2O–CO2 co-electrolysis for tunable syngas composition in solid oxide electrolysis cell\",\"authors\":\"Shuidan Gu ,&nbsp;Shiming Hu ,&nbsp;Caichen Yang ,&nbsp;Yunfeng Tian ,&nbsp;Kaisheng Xia ,&nbsp;Jian Pu ,&nbsp;Bo Chi\",\"doi\":\"10.1016/j.jpowsour.2025.238500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>H<sub>2</sub>O–CO<sub>2</sub> co-electrolysis in solid oxide electrolysis cells (SOECs) represents an efficient approach to syngas (H<sub>2</sub> + CO) production, enabling downstream synthesis of carbon-neutral fuels. However, complex competing pathways—particularly the poorly understood CO<sub>2</sub> reduction mechanism—hinder precise control of syngas composition. Here, we experimentally determine the onset voltage of CO<sub>2</sub> electrolysis under co-electrolysis conditions, addressing existing gaps in the early literature. By coupling electrochemical analysis with outlet gas analysis, two voltage-dependent regimes are identified: at low voltages, CO is primarily generated via the thermochemical reverse water-gas shift (RWGS) reaction, while at high voltages, both RWGS and CO<sub>2</sub> electrolysis occur, with RWGS remaining dominant. The onset voltages for CO<sub>2</sub> electrolysis are precisely determined as 0.9 V, 1.1 V, and 1.2 V for atmospheres of 20 % H<sub>2</sub>O–80 % CO<sub>2</sub>, 50 % H<sub>2</sub>O–50 % CO<sub>2</sub>, and 80 % H<sub>2</sub>O–20 % CO<sub>2</sub>, respectively, marking the transition from pure H<sub>2</sub>O electrolysis to H<sub>2</sub>O–CO<sub>2</sub> co-electrolysis. Feed composition is the dominant factor influencing the onset voltage and syngas selectivity, while operating parameters such as flow rate and temperature also have noticeable effects, enabling wide H<sub>2</sub>/CO range ratio (1.09–5.40). These results provide new insights into the CO<sub>2</sub> reduction pathway and offer guidance for the rational design of SOEC operation for controllable syngas production.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"660 \",\"pages\":\"Article 238500\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325023365\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325023365","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物电解电池(SOECs)中的H2O-CO2共电解是合成气(H2 + CO)生产的一种有效方法,可以实现下游碳中性燃料的合成。然而,复杂的竞争途径,特别是对二氧化碳还原机制知之甚少,阻碍了合成气成分的精确控制。在这里,我们通过实验确定了共电解条件下CO2电解的起始电压,解决了早期文献中存在的空白。通过耦合电化学分析和出口气体分析,确定了两种电压依赖机制:在低电压下,CO主要通过热化学逆向水气变换(RWGS)反应产生,而在高电压下,RWGS和CO2都发生电解,以RWGS为主。在20% H2O - 80% CO2、50% H2O - 50% CO2和80% H2O - 20% CO2环境下,精确测定了CO2电解的起始电压分别为0.9 V、1.1 V和1.2 V,标志着从纯H2O电解到H2O - CO2共电解的过渡。进料组成是影响启动电压和合成气选择性的主要因素,而流量和温度等操作参数也有显著影响,可以实现较宽的H2/CO范围比(1.09-5.40)。这些结果为研究CO2减排途径提供了新的思路,并为合理设计SOEC操作以实现可控合成气生产提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling reaction pathways in H2O–CO2 co-electrolysis for tunable syngas composition in solid oxide electrolysis cell
H2O–CO2 co-electrolysis in solid oxide electrolysis cells (SOECs) represents an efficient approach to syngas (H2 + CO) production, enabling downstream synthesis of carbon-neutral fuels. However, complex competing pathways—particularly the poorly understood CO2 reduction mechanism—hinder precise control of syngas composition. Here, we experimentally determine the onset voltage of CO2 electrolysis under co-electrolysis conditions, addressing existing gaps in the early literature. By coupling electrochemical analysis with outlet gas analysis, two voltage-dependent regimes are identified: at low voltages, CO is primarily generated via the thermochemical reverse water-gas shift (RWGS) reaction, while at high voltages, both RWGS and CO2 electrolysis occur, with RWGS remaining dominant. The onset voltages for CO2 electrolysis are precisely determined as 0.9 V, 1.1 V, and 1.2 V for atmospheres of 20 % H2O–80 % CO2, 50 % H2O–50 % CO2, and 80 % H2O–20 % CO2, respectively, marking the transition from pure H2O electrolysis to H2O–CO2 co-electrolysis. Feed composition is the dominant factor influencing the onset voltage and syngas selectivity, while operating parameters such as flow rate and temperature also have noticeable effects, enabling wide H2/CO range ratio (1.09–5.40). These results provide new insights into the CO2 reduction pathway and offer guidance for the rational design of SOEC operation for controllable syngas production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信