基于非共面v形Tröger碱-咔唑衍生物的高自由体积超支化聚芳基胡椒啶阴离子交换膜及其对水电解中离子电导率和尺寸稳定性的协同增强

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Sihan Li , Yingqing Zhan , Jie Liu , Xinyue Duan , Junlei Tang , Wei Zhao , Ping Zhang
{"title":"基于非共面v形Tröger碱-咔唑衍生物的高自由体积超支化聚芳基胡椒啶阴离子交换膜及其对水电解中离子电导率和尺寸稳定性的协同增强","authors":"Sihan Li ,&nbsp;Yingqing Zhan ,&nbsp;Jie Liu ,&nbsp;Xinyue Duan ,&nbsp;Junlei Tang ,&nbsp;Wei Zhao ,&nbsp;Ping Zhang","doi":"10.1016/j.memsci.2025.124751","DOIUrl":null,"url":null,"abstract":"<div><div>The practical application of poly(aryl piperidinium) AEMs in water electrolysis is constrained by two major technical bottlenecks: (1) conformational distortion of the piperidine group reducing alkaline stability; (2) tight packing of polymer main chain hindering OH<sup>−</sup> transport. In this study, the noncoplanar V-shaped Tröger Base-Carbazole derivative, 2,8-di(<em>N</em>-carbazolyl)-6H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine (CTB), was designed and introduced into poly(aryl piperidinium) chain, thus obtaining a series of hyperbranched AEMs. Compared with linear polymer chain, the unique V-shaped three-dimensional structure in CTB inhibited tight packing of polymer and increased free volume within the membrane, thereby effectively enhancing the migration rate of OH<sup>−</sup>. At 80 °C, the QPCTB-PEG-TP-5 achieved a high ionic conductivity of 159.79 mS/cm with a low ion exchange capacity (1.108 mmol/g), while maintaining the swelling ratio below 8.5 %. Additionally, the electrostatic potential analysis and <sup>1</sup>H NMR spectroscopy revealed that the bridged methylene groups in CTB protected piperidine cationic groups from Hoffmann elimination. After treatment in 1 M KOH medium at 60 °C for 1000 h, the OH<sup>−</sup> conductivity retention rate and tensile strength reached 80.72 % and 21.71 MPa, respectively. The favorable OH<sup>−</sup> conductivity, mechanical strength, and alkaline stability strongly supported the application of AEM in water electrolysis. The AEMWE equipped with QPCTB-PEG-TP-5 type AEM achieved an instantaneous current density of 608 mA/cm<sup>2</sup> (60 °C, 1.51 V) and operated stably for 120 h without degradation at a current density of 250 mA/cm<sup>2</sup>. Therefore, the molecular structure design of hyperbranched poly(aryl piperidinium) AEMs based on noncoplanar V-shaped Tröger Base-Carbazole derivative provides an effective approach to solve the dual challenge of poor alkaline stability and low ionic conductivity.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124751"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High free-volume hyperbranched poly(aryl piperidinium) anion exchange membranes based on noncoplanar V-shaped Tröger Base-Carbazole derivative with synergistic enhancement of ionic conductivity and dimensional stability for water electrolysis\",\"authors\":\"Sihan Li ,&nbsp;Yingqing Zhan ,&nbsp;Jie Liu ,&nbsp;Xinyue Duan ,&nbsp;Junlei Tang ,&nbsp;Wei Zhao ,&nbsp;Ping Zhang\",\"doi\":\"10.1016/j.memsci.2025.124751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The practical application of poly(aryl piperidinium) AEMs in water electrolysis is constrained by two major technical bottlenecks: (1) conformational distortion of the piperidine group reducing alkaline stability; (2) tight packing of polymer main chain hindering OH<sup>−</sup> transport. In this study, the noncoplanar V-shaped Tröger Base-Carbazole derivative, 2,8-di(<em>N</em>-carbazolyl)-6H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine (CTB), was designed and introduced into poly(aryl piperidinium) chain, thus obtaining a series of hyperbranched AEMs. Compared with linear polymer chain, the unique V-shaped three-dimensional structure in CTB inhibited tight packing of polymer and increased free volume within the membrane, thereby effectively enhancing the migration rate of OH<sup>−</sup>. At 80 °C, the QPCTB-PEG-TP-5 achieved a high ionic conductivity of 159.79 mS/cm with a low ion exchange capacity (1.108 mmol/g), while maintaining the swelling ratio below 8.5 %. Additionally, the electrostatic potential analysis and <sup>1</sup>H NMR spectroscopy revealed that the bridged methylene groups in CTB protected piperidine cationic groups from Hoffmann elimination. After treatment in 1 M KOH medium at 60 °C for 1000 h, the OH<sup>−</sup> conductivity retention rate and tensile strength reached 80.72 % and 21.71 MPa, respectively. The favorable OH<sup>−</sup> conductivity, mechanical strength, and alkaline stability strongly supported the application of AEM in water electrolysis. The AEMWE equipped with QPCTB-PEG-TP-5 type AEM achieved an instantaneous current density of 608 mA/cm<sup>2</sup> (60 °C, 1.51 V) and operated stably for 120 h without degradation at a current density of 250 mA/cm<sup>2</sup>. Therefore, the molecular structure design of hyperbranched poly(aryl piperidinium) AEMs based on noncoplanar V-shaped Tröger Base-Carbazole derivative provides an effective approach to solve the dual challenge of poor alkaline stability and low ionic conductivity.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"738 \",\"pages\":\"Article 124751\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738825010646\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010646","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚芳基哌啶AEMs在水电解中的实际应用受到两大技术瓶颈的制约:(1)哌啶基团构象畸变降低碱性稳定性;(2)聚合物主链紧密堆积,阻碍OH−输运。本研究设计了非共面v形Tröger碱-咔唑衍生物2,8-二(n -咔唑基)-6H, 12h -5,11-甲烷-二苯并[b,f][1,5]重氮辛(CTB),并将其引入聚芳基哌啶链中,得到了一系列超支化的AEMs。与线性聚合物链相比,CTB独特的v型三维结构抑制了聚合物的紧密堆积,增加了膜内的自由体积,从而有效地提高了OH−的迁移速率。在80℃下,QPCTB-PEG-TP-5的离子电导率达到159.79 mS/cm,离子交换容量较低(1.108 mmol/g),溶胀率保持在8.5%以下。此外,静电电位分析和1H NMR谱分析表明,CTB中的桥接亚甲基保护了哌啶阳离子基免受Hoffmann消除。在1 M KOH介质中,60℃下处理1000 h后,OH -电导率和抗拉强度分别达到80.72%和21.71 MPa。良好的OH -导电性、机械强度和碱性稳定性有力地支持了AEM在水电解中的应用。配备QPCTB-PEG-TP-5型AEM的AEMWE在电流密度为250 mA/cm2时,瞬时电流密度达到608 mA/cm2(60°C, 1.51 V),可稳定工作120 h而不退化。因此,基于非共面v型Tröger碱-咔唑衍生物的超支化聚芳基哌啶衍生物的分子结构设计为解决碱性稳定性差和离子电导率低的双重挑战提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High free-volume hyperbranched poly(aryl piperidinium) anion exchange membranes based on noncoplanar V-shaped Tröger Base-Carbazole derivative with synergistic enhancement of ionic conductivity and dimensional stability for water electrolysis

High free-volume hyperbranched poly(aryl piperidinium) anion exchange membranes based on noncoplanar V-shaped Tröger Base-Carbazole derivative with synergistic enhancement of ionic conductivity and dimensional stability for water electrolysis
The practical application of poly(aryl piperidinium) AEMs in water electrolysis is constrained by two major technical bottlenecks: (1) conformational distortion of the piperidine group reducing alkaline stability; (2) tight packing of polymer main chain hindering OH transport. In this study, the noncoplanar V-shaped Tröger Base-Carbazole derivative, 2,8-di(N-carbazolyl)-6H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine (CTB), was designed and introduced into poly(aryl piperidinium) chain, thus obtaining a series of hyperbranched AEMs. Compared with linear polymer chain, the unique V-shaped three-dimensional structure in CTB inhibited tight packing of polymer and increased free volume within the membrane, thereby effectively enhancing the migration rate of OH. At 80 °C, the QPCTB-PEG-TP-5 achieved a high ionic conductivity of 159.79 mS/cm with a low ion exchange capacity (1.108 mmol/g), while maintaining the swelling ratio below 8.5 %. Additionally, the electrostatic potential analysis and 1H NMR spectroscopy revealed that the bridged methylene groups in CTB protected piperidine cationic groups from Hoffmann elimination. After treatment in 1 M KOH medium at 60 °C for 1000 h, the OH conductivity retention rate and tensile strength reached 80.72 % and 21.71 MPa, respectively. The favorable OH conductivity, mechanical strength, and alkaline stability strongly supported the application of AEM in water electrolysis. The AEMWE equipped with QPCTB-PEG-TP-5 type AEM achieved an instantaneous current density of 608 mA/cm2 (60 °C, 1.51 V) and operated stably for 120 h without degradation at a current density of 250 mA/cm2. Therefore, the molecular structure design of hyperbranched poly(aryl piperidinium) AEMs based on noncoplanar V-shaped Tröger Base-Carbazole derivative provides an effective approach to solve the dual challenge of poor alkaline stability and low ionic conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信