具有工程扩散能垒的杂环化合物锚定纳滤膜用于Cl−/SO42−分离

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yucai Li , Can Deng , Haotian Hu , Yida Wang , Zijian Qi , Cong Chen , Cailong Zhou , Liang Shen
{"title":"具有工程扩散能垒的杂环化合物锚定纳滤膜用于Cl−/SO42−分离","authors":"Yucai Li ,&nbsp;Can Deng ,&nbsp;Haotian Hu ,&nbsp;Yida Wang ,&nbsp;Zijian Qi ,&nbsp;Cong Chen ,&nbsp;Cailong Zhou ,&nbsp;Liang Shen","doi":"10.1016/j.memsci.2025.124784","DOIUrl":null,"url":null,"abstract":"<div><div>Polyamide thin-film composite (PA TFC) membranes synthesized <em>via</em> conventional interfacial polymerization (IP) often underperform in Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> separation due to their subpar spatial architectures. This study presents a novel strategy to fabricate advanced anion-selective nanofiltration (NF) membranes by functionalizing PA selective layer pore walls with nitrogen/oxygen-containing heterocyclic compounds (crown ether and cyclen) to tailor intrapore chemical microenvironments. Both experimental validations and molecular simulation results demonstrate that precise regulation of chemical interactions between the membrane matrix and permeation species (NaCl/Na<sub>2</sub>SO<sub>4</sub>) enables controlled tuning of diffusion energy barriers for anions traversing the membrane. Beyond size exclusion and charge repulsion mechanisms, we employ transition state theory to elucidate the fundamental Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> separation mechanism. The distinct roles of these compounds in modulating IP reaction kinetics and their impacts on membrane microstructure are systematically investigated. Integration of heterocycles into the PA network yields more hydrophilic, less densely packed membranes. Resultant cyclen-modified membranes achieve exceptional separation performance (water flux of 26.65 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> selectivity of 223), while 15-crown-5-modified membranes exhibit remarkable Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> selectivity (690, Na<sub>2</sub>SO<sub>4</sub> rejection of 99.71 %) with maintained water flux (17.50 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>). These modified membranes also exhibit robust long-term stability and excellent fouling resistance. This work establishes a novel pathway for developing high-performance Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> separation membranes through engineered control of ion diffusion energy barrier.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124784"},"PeriodicalIF":9.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterocyclic compound-anchored nanofiltration membrane with engineered diffusion energy barrier for Cl−/SO42− separation\",\"authors\":\"Yucai Li ,&nbsp;Can Deng ,&nbsp;Haotian Hu ,&nbsp;Yida Wang ,&nbsp;Zijian Qi ,&nbsp;Cong Chen ,&nbsp;Cailong Zhou ,&nbsp;Liang Shen\",\"doi\":\"10.1016/j.memsci.2025.124784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyamide thin-film composite (PA TFC) membranes synthesized <em>via</em> conventional interfacial polymerization (IP) often underperform in Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> separation due to their subpar spatial architectures. This study presents a novel strategy to fabricate advanced anion-selective nanofiltration (NF) membranes by functionalizing PA selective layer pore walls with nitrogen/oxygen-containing heterocyclic compounds (crown ether and cyclen) to tailor intrapore chemical microenvironments. Both experimental validations and molecular simulation results demonstrate that precise regulation of chemical interactions between the membrane matrix and permeation species (NaCl/Na<sub>2</sub>SO<sub>4</sub>) enables controlled tuning of diffusion energy barriers for anions traversing the membrane. Beyond size exclusion and charge repulsion mechanisms, we employ transition state theory to elucidate the fundamental Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> separation mechanism. The distinct roles of these compounds in modulating IP reaction kinetics and their impacts on membrane microstructure are systematically investigated. Integration of heterocycles into the PA network yields more hydrophilic, less densely packed membranes. Resultant cyclen-modified membranes achieve exceptional separation performance (water flux of 26.65 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> selectivity of 223), while 15-crown-5-modified membranes exhibit remarkable Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> selectivity (690, Na<sub>2</sub>SO<sub>4</sub> rejection of 99.71 %) with maintained water flux (17.50 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>). These modified membranes also exhibit robust long-term stability and excellent fouling resistance. This work establishes a novel pathway for developing high-performance Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> separation membranes through engineered control of ion diffusion energy barrier.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"738 \",\"pages\":\"Article 124784\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037673882501097X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037673882501097X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过传统界面聚合(IP)合成的聚酰胺薄膜复合材料(PA TFC)膜由于其欠佳的空间结构,在Cl−/SO42−分离中表现不佳。本研究提出了一种新的策略,通过含氮/含氧杂环化合物(冠醚和环素)功能化PA选择层孔壁来定制孔内化学微环境,从而制备高级阴离子选择性纳滤(NF)膜。实验验证和分子模拟结果表明,通过精确调控膜基质与渗透物质(NaCl/Na2SO4)之间的化学相互作用,可以控制阴离子穿过膜的扩散能垒。除了尺寸排斥和电荷排斥机制外,我们还采用过渡态理论来解释Cl−/SO42−的基本分离机制。系统地研究了这些化合物在调节IP反应动力学中的独特作用及其对膜微观结构的影响。杂环化合物与PA网络的结合产生了更亲水、密度更小的膜。由此得到的循环修饰膜具有优异的分离性能(水通量为26.65 L m−2 h−1 bar−1,Cl−/SO42选择性为223),而15-冠-5修饰膜在保持水通量(17.50 L m−2 h−1 bar−1)的情况下具有显著的Cl−/SO42选择性(690,Na2SO4去除率为99.71%)。这些改性膜还表现出强大的长期稳定性和优异的抗污染能力。本研究建立了一条通过工程控制离子扩散能垒来制备高性能Cl - /SO42 -分离膜的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterocyclic compound-anchored nanofiltration membrane with engineered diffusion energy barrier for Cl−/SO42− separation

Heterocyclic compound-anchored nanofiltration membrane with engineered diffusion energy barrier for Cl−/SO42− separation
Polyamide thin-film composite (PA TFC) membranes synthesized via conventional interfacial polymerization (IP) often underperform in Cl/SO42− separation due to their subpar spatial architectures. This study presents a novel strategy to fabricate advanced anion-selective nanofiltration (NF) membranes by functionalizing PA selective layer pore walls with nitrogen/oxygen-containing heterocyclic compounds (crown ether and cyclen) to tailor intrapore chemical microenvironments. Both experimental validations and molecular simulation results demonstrate that precise regulation of chemical interactions between the membrane matrix and permeation species (NaCl/Na2SO4) enables controlled tuning of diffusion energy barriers for anions traversing the membrane. Beyond size exclusion and charge repulsion mechanisms, we employ transition state theory to elucidate the fundamental Cl/SO42− separation mechanism. The distinct roles of these compounds in modulating IP reaction kinetics and their impacts on membrane microstructure are systematically investigated. Integration of heterocycles into the PA network yields more hydrophilic, less densely packed membranes. Resultant cyclen-modified membranes achieve exceptional separation performance (water flux of 26.65 L m−2 h−1 bar−1, Cl/SO42− selectivity of 223), while 15-crown-5-modified membranes exhibit remarkable Cl/SO42− selectivity (690, Na2SO4 rejection of 99.71 %) with maintained water flux (17.50 L m−2 h−1 bar−1). These modified membranes also exhibit robust long-term stability and excellent fouling resistance. This work establishes a novel pathway for developing high-performance Cl/SO42− separation membranes through engineered control of ion diffusion energy barrier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信