富氮多孔有机聚合物用于混合基质膜中CO2/N2的高效分离

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yeanah Jeong, Younghun Kim, Woosung Jeong, Hye Leen Choi, Jihan Kim, Tae-Hyun Bae
{"title":"富氮多孔有机聚合物用于混合基质膜中CO2/N2的高效分离","authors":"Yeanah Jeong,&nbsp;Younghun Kim,&nbsp;Woosung Jeong,&nbsp;Hye Leen Choi,&nbsp;Jihan Kim,&nbsp;Tae-Hyun Bae","doi":"10.1016/j.memsci.2025.124749","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance mixed matrix membranes (MMMs) for CO<sub>2</sub>/N<sub>2</sub> separation requires fillers that simultaneously enhance gas permeability and selectivity without introducing interfacial defects. In this study, we report the synthesis of nitrogen-containing porous organic polymers (POPs) via a one-step Friedel–Crafts polymerization, designed to introduce CO<sub>2</sub>-philic functional groups directly into the polymer backbone while preserving intrinsic porosity. Structural and gas sorption analyses confirmed that the synthesized POPs exhibit high microporosity, surface area, and nitrogen content, which together enhance CO<sub>2</sub> adsorption affinity. When incorporated into Matrimid-based MMMs, the POPs significantly improved CO<sub>2</sub> permeability and CO<sub>2</sub>/N<sub>2</sub> selectivity, with the pp-tpta filler (containing the highest nitrogen content) delivering the most pronounced performance enhancement. Further optimization using a high-permeability 6FDA-DAM polyimide matrix yielded a membrane with a CO<sub>2</sub> permeability of 1967 Barrer and a selectivity of 33.4 at 20 wt% pp-tpta loading, surpassing the 2008 Robeson Upper Bound. Solubility–diffusivity analyses, supported by both experimental measurements and molecular dynamics simulations, revealed that the pp-tpta filler enhances CO<sub>2</sub>/N<sub>2</sub> separation primarily by increasing CO<sub>2</sub> solubility and diffusivity within the membrane matrix. These results underscore the potential of rationally designed, nitrogen-rich POP fillers as effective, scalable materials for advanced gas separation membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124749"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-enriched porous organic polymers for high-performance CO2/N2 separation in mixed-matrix membranes\",\"authors\":\"Yeanah Jeong,&nbsp;Younghun Kim,&nbsp;Woosung Jeong,&nbsp;Hye Leen Choi,&nbsp;Jihan Kim,&nbsp;Tae-Hyun Bae\",\"doi\":\"10.1016/j.memsci.2025.124749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of high-performance mixed matrix membranes (MMMs) for CO<sub>2</sub>/N<sub>2</sub> separation requires fillers that simultaneously enhance gas permeability and selectivity without introducing interfacial defects. In this study, we report the synthesis of nitrogen-containing porous organic polymers (POPs) via a one-step Friedel–Crafts polymerization, designed to introduce CO<sub>2</sub>-philic functional groups directly into the polymer backbone while preserving intrinsic porosity. Structural and gas sorption analyses confirmed that the synthesized POPs exhibit high microporosity, surface area, and nitrogen content, which together enhance CO<sub>2</sub> adsorption affinity. When incorporated into Matrimid-based MMMs, the POPs significantly improved CO<sub>2</sub> permeability and CO<sub>2</sub>/N<sub>2</sub> selectivity, with the pp-tpta filler (containing the highest nitrogen content) delivering the most pronounced performance enhancement. Further optimization using a high-permeability 6FDA-DAM polyimide matrix yielded a membrane with a CO<sub>2</sub> permeability of 1967 Barrer and a selectivity of 33.4 at 20 wt% pp-tpta loading, surpassing the 2008 Robeson Upper Bound. Solubility–diffusivity analyses, supported by both experimental measurements and molecular dynamics simulations, revealed that the pp-tpta filler enhances CO<sub>2</sub>/N<sub>2</sub> separation primarily by increasing CO<sub>2</sub> solubility and diffusivity within the membrane matrix. These results underscore the potential of rationally designed, nitrogen-rich POP fillers as effective, scalable materials for advanced gas separation membranes.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"738 \",\"pages\":\"Article 124749\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738825010622\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010622","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发用于CO2/N2分离的高性能混合基质膜(MMMs)需要填料在不引入界面缺陷的情况下同时提高气体渗透性和选择性。在这项研究中,我们报告了通过一步Friedel-Crafts聚合合成含氮多孔有机聚合物(POPs),旨在将亲二氧化碳官能团直接引入聚合物主链,同时保持固有孔隙度。结构和气体吸附分析证实,合成的持久性有机污染物具有较高的微孔隙度、比表面积和氮含量,这些都增强了对CO2的吸附亲和力。当加入到基于matrimids的mmmm中时,pop显著提高了CO2渗透率和CO2/N2选择性,其中pp-tpta填料(含氮量最高)的性能增强效果最为明显。进一步优化使用高渗透性的6FDA-DAM聚酰亚胺基质,得到的膜的CO2渗透率为1967 Barrer,在20% pp-tpta负载下的选择性为33.4%,超过了2008年的Robeson上限。在实验测量和分子动力学模拟的支持下,溶解度-扩散性分析表明,pp-tpta填料主要通过增加CO2在膜基质中的溶解度和扩散性来增强CO2/N2分离。这些结果强调了合理设计的富氮POP填料作为先进气体分离膜的有效、可扩展材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nitrogen-enriched porous organic polymers for high-performance CO2/N2 separation in mixed-matrix membranes

Nitrogen-enriched porous organic polymers for high-performance CO2/N2 separation in mixed-matrix membranes
The development of high-performance mixed matrix membranes (MMMs) for CO2/N2 separation requires fillers that simultaneously enhance gas permeability and selectivity without introducing interfacial defects. In this study, we report the synthesis of nitrogen-containing porous organic polymers (POPs) via a one-step Friedel–Crafts polymerization, designed to introduce CO2-philic functional groups directly into the polymer backbone while preserving intrinsic porosity. Structural and gas sorption analyses confirmed that the synthesized POPs exhibit high microporosity, surface area, and nitrogen content, which together enhance CO2 adsorption affinity. When incorporated into Matrimid-based MMMs, the POPs significantly improved CO2 permeability and CO2/N2 selectivity, with the pp-tpta filler (containing the highest nitrogen content) delivering the most pronounced performance enhancement. Further optimization using a high-permeability 6FDA-DAM polyimide matrix yielded a membrane with a CO2 permeability of 1967 Barrer and a selectivity of 33.4 at 20 wt% pp-tpta loading, surpassing the 2008 Robeson Upper Bound. Solubility–diffusivity analyses, supported by both experimental measurements and molecular dynamics simulations, revealed that the pp-tpta filler enhances CO2/N2 separation primarily by increasing CO2 solubility and diffusivity within the membrane matrix. These results underscore the potential of rationally designed, nitrogen-rich POP fillers as effective, scalable materials for advanced gas separation membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信