Amit Makarand Deshpande , Urjit Lad , Sai Aditya Pradeep , Ningxiner Zhao , Leon M. Headings , Marcelo J. Dapino , Ryan Hahnlen , Gang Li , Michael Carbajales-Dale , Kevin Simmons , Srikanth Pilla
{"title":"轻量化多材料金属纤维复合材料混合白车身设计生命周期能量评价比较","authors":"Amit Makarand Deshpande , Urjit Lad , Sai Aditya Pradeep , Ningxiner Zhao , Leon M. Headings , Marcelo J. Dapino , Ryan Hahnlen , Gang Li , Michael Carbajales-Dale , Kevin Simmons , Srikanth Pilla","doi":"10.1016/j.compositesb.2025.113000","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweighting is crucial for enhancing vehicle efficiency and reducing tailpipe emissions. Fiber-reinforced plastic (FRP) composites for the Body-in-White (BIW) are a major research focus aimed at achieving lightweighting. FRP composite manufacturing processes, such as vacuum infusion or automated fiber placement, cannot meet the automotive industry's rates, cycle times and large production volumes. From a cost standpoint, as component size and scale of manufacturing increase, material cost becomes the dominant factor in production, inhibiting the use of expensive composite materials. Thus, multi-material structural designs have taken center stage, where lightweight materials and high-rate composite manufacturing processes are strategically used in conjunction with traditional metallic designs.</div><div>A highly integrated multi-material, FRP-intensive BIW design was developed using unique multi-material metal-fiber transition joints that enable spot welding of composite parts. This allows a multi-material BIW to be manufactured with minimal change to the vehicle manufacturer's assembly and joining infrastructure, presenting a cost-effective solution to integrate composites. From a sustainability standpoint, the life cycle impact of these multi-material designs and composite manufacturing methodologies must be investigated and compared with contemporary sheet-metal designs. A comprehensive comparative life cycle energy assessment has been performed on the proposed multi-material designs manufactured using fast-cycle composite manufacturing processes. Determining the cumulative energy demand over the entire life cycle of the multi-material BIW provides valuable insights into the material composition of the multi-material BIW. It also helps establish a trade-off between the use of energy-intensive composite materials and the energy savings achieved during the use stage due to lightweighting.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"309 ","pages":"Article 113000"},"PeriodicalIF":14.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative life cycle energy assessment of lightweight multi-material metal-fiber composite hybrid body-in-white designs\",\"authors\":\"Amit Makarand Deshpande , Urjit Lad , Sai Aditya Pradeep , Ningxiner Zhao , Leon M. Headings , Marcelo J. Dapino , Ryan Hahnlen , Gang Li , Michael Carbajales-Dale , Kevin Simmons , Srikanth Pilla\",\"doi\":\"10.1016/j.compositesb.2025.113000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lightweighting is crucial for enhancing vehicle efficiency and reducing tailpipe emissions. Fiber-reinforced plastic (FRP) composites for the Body-in-White (BIW) are a major research focus aimed at achieving lightweighting. FRP composite manufacturing processes, such as vacuum infusion or automated fiber placement, cannot meet the automotive industry's rates, cycle times and large production volumes. From a cost standpoint, as component size and scale of manufacturing increase, material cost becomes the dominant factor in production, inhibiting the use of expensive composite materials. Thus, multi-material structural designs have taken center stage, where lightweight materials and high-rate composite manufacturing processes are strategically used in conjunction with traditional metallic designs.</div><div>A highly integrated multi-material, FRP-intensive BIW design was developed using unique multi-material metal-fiber transition joints that enable spot welding of composite parts. This allows a multi-material BIW to be manufactured with minimal change to the vehicle manufacturer's assembly and joining infrastructure, presenting a cost-effective solution to integrate composites. From a sustainability standpoint, the life cycle impact of these multi-material designs and composite manufacturing methodologies must be investigated and compared with contemporary sheet-metal designs. A comprehensive comparative life cycle energy assessment has been performed on the proposed multi-material designs manufactured using fast-cycle composite manufacturing processes. Determining the cumulative energy demand over the entire life cycle of the multi-material BIW provides valuable insights into the material composition of the multi-material BIW. It also helps establish a trade-off between the use of energy-intensive composite materials and the energy savings achieved during the use stage due to lightweighting.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"309 \",\"pages\":\"Article 113000\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825009114\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825009114","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative life cycle energy assessment of lightweight multi-material metal-fiber composite hybrid body-in-white designs
Lightweighting is crucial for enhancing vehicle efficiency and reducing tailpipe emissions. Fiber-reinforced plastic (FRP) composites for the Body-in-White (BIW) are a major research focus aimed at achieving lightweighting. FRP composite manufacturing processes, such as vacuum infusion or automated fiber placement, cannot meet the automotive industry's rates, cycle times and large production volumes. From a cost standpoint, as component size and scale of manufacturing increase, material cost becomes the dominant factor in production, inhibiting the use of expensive composite materials. Thus, multi-material structural designs have taken center stage, where lightweight materials and high-rate composite manufacturing processes are strategically used in conjunction with traditional metallic designs.
A highly integrated multi-material, FRP-intensive BIW design was developed using unique multi-material metal-fiber transition joints that enable spot welding of composite parts. This allows a multi-material BIW to be manufactured with minimal change to the vehicle manufacturer's assembly and joining infrastructure, presenting a cost-effective solution to integrate composites. From a sustainability standpoint, the life cycle impact of these multi-material designs and composite manufacturing methodologies must be investigated and compared with contemporary sheet-metal designs. A comprehensive comparative life cycle energy assessment has been performed on the proposed multi-material designs manufactured using fast-cycle composite manufacturing processes. Determining the cumulative energy demand over the entire life cycle of the multi-material BIW provides valuable insights into the material composition of the multi-material BIW. It also helps establish a trade-off between the use of energy-intensive composite materials and the energy savings achieved during the use stage due to lightweighting.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.