钠离子电池用o3型NaNi1/3Fe1/3Mn1/3O2阴极的形态工程和梯度结构:宽温适应性和空气稳定性的协同调节

IF 14.2 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yong Liang, Wanmin Liu, Zexun Tang, Mulan Qin, Jie Zeng, Xiang Wang
{"title":"钠离子电池用o3型NaNi1/3Fe1/3Mn1/3O2阴极的形态工程和梯度结构:宽温适应性和空气稳定性的协同调节","authors":"Yong Liang,&nbsp;Wanmin Liu,&nbsp;Zexun Tang,&nbsp;Mulan Qin,&nbsp;Jie Zeng,&nbsp;Xiang Wang","doi":"10.1016/j.compositesb.2025.113073","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of high-performance, air-stable cathode materials presents a critical challenge for sodium-ion battery commercialization. While morphological engineering offers property modulation, conventional homogeneous designs fundamentally limit the balance between reactivity and structural stability. This work employs a coprecipitation-based approach to innovatively integrate morphological control and compositional gradient design, constructing a cubic O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM-3) cathode with a nickel-rich core/manganese-rich shell architecture. Benefiting from the superior kinetics of cubic particles and the synergistic effects of gradient structure on Na<sup>+</sup> transport, surface passivation suppression, and transition metal stabilization, NFM-3 achieves breakthrough performance across a broad temperature range (−20 to 70 °C) and under air exposure conditions. At 25 °C and 0.1 C (2.0–4.0 V), it delivers an initial discharge capacity of 145.2 mAh·g<sup>−1</sup> with 82.2 % capacity retention after 500 cycles at 1 C, while maintaining 87.3 mAh·g<sup>−1</sup> at a high rate of 10 C. At a low temperature of −20 °C, the material retains a discharge capacity of 126.9 mAh g<sup>−1</sup> with 85.5 % capacity retention. At an elevated temperature of 70 °C, the corresponding values are 141.4 mAh·g<sup>−1</sup> and 22.5 %, respectively. Notably, after 30-day exposure to ambient conditions, NFM-3 preserves 93.4 % initial capacity while sustaining post-exposure cyclability (75.7 %) and high-rate capability (74.9 mAh·g<sup>−1</sup> at 10 C). This work establishes a pioneering pathway toward highly reversible and environmentally resilient SIB cathodes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"309 ","pages":"Article 113073"},"PeriodicalIF":14.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological engineering and gradient architecture of O3-Type NaNi1/3Fe1/3Mn1/3O2 cathodes for sodium-ion batteries: Synergistic modulation of wide-temperature adaptability and air stability\",\"authors\":\"Yong Liang,&nbsp;Wanmin Liu,&nbsp;Zexun Tang,&nbsp;Mulan Qin,&nbsp;Jie Zeng,&nbsp;Xiang Wang\",\"doi\":\"10.1016/j.compositesb.2025.113073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pursuit of high-performance, air-stable cathode materials presents a critical challenge for sodium-ion battery commercialization. While morphological engineering offers property modulation, conventional homogeneous designs fundamentally limit the balance between reactivity and structural stability. This work employs a coprecipitation-based approach to innovatively integrate morphological control and compositional gradient design, constructing a cubic O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM-3) cathode with a nickel-rich core/manganese-rich shell architecture. Benefiting from the superior kinetics of cubic particles and the synergistic effects of gradient structure on Na<sup>+</sup> transport, surface passivation suppression, and transition metal stabilization, NFM-3 achieves breakthrough performance across a broad temperature range (−20 to 70 °C) and under air exposure conditions. At 25 °C and 0.1 C (2.0–4.0 V), it delivers an initial discharge capacity of 145.2 mAh·g<sup>−1</sup> with 82.2 % capacity retention after 500 cycles at 1 C, while maintaining 87.3 mAh·g<sup>−1</sup> at a high rate of 10 C. At a low temperature of −20 °C, the material retains a discharge capacity of 126.9 mAh g<sup>−1</sup> with 85.5 % capacity retention. At an elevated temperature of 70 °C, the corresponding values are 141.4 mAh·g<sup>−1</sup> and 22.5 %, respectively. Notably, after 30-day exposure to ambient conditions, NFM-3 preserves 93.4 % initial capacity while sustaining post-exposure cyclability (75.7 %) and high-rate capability (74.9 mAh·g<sup>−1</sup> at 10 C). This work establishes a pioneering pathway toward highly reversible and environmentally resilient SIB cathodes.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"309 \",\"pages\":\"Article 113073\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825009849\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825009849","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

追求高性能、空气稳定的正极材料是钠离子电池商业化的关键挑战。虽然形态工程提供了性能调节,但传统的均匀设计从根本上限制了反应性和结构稳定性之间的平衡。本研究采用基于共沉淀的方法,创新地整合了形态控制和成分梯度设计,构建了一个具有富镍核/富锰壳结构的立方o3型NaNi1/3Fe1/3Mn1/3O2 (NFM-3)阴极。得益于立方颗粒的优异动力学和梯度结构对Na+传输、表面钝化抑制和过渡金属稳定的协同效应,NFM-3在宽温度范围(- 20至70°C)和空气暴露条件下都取得了突破性的性能。在25°C和0.1 C (2.0-4.0 V)下,该材料在1℃下循环500次后的初始放电容量为145.2 mAh·g−1,容量保留率为82.2%,而在10℃的高倍率下,该材料的放电容量保持为87.3 mAh·g−1,在- 20℃的低温下,该材料的放电容量保持为126.9 mAh·g−1,容量保留率为85.5%。在70℃的高温下,对应的值分别为141.4 mAh·g−1和22.5%。值得注意的是,在环境条件下暴露30天后,NFM-3保持了93.4%的初始容量,同时保持了暴露后的可循环性(75.7%)和高倍率容量(10℃时74.9 mAh·g−1)。这项工作为高度可逆和环境弹性的SIB阴极建立了一条开创性的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological engineering and gradient architecture of O3-Type NaNi1/3Fe1/3Mn1/3O2 cathodes for sodium-ion batteries: Synergistic modulation of wide-temperature adaptability and air stability
The pursuit of high-performance, air-stable cathode materials presents a critical challenge for sodium-ion battery commercialization. While morphological engineering offers property modulation, conventional homogeneous designs fundamentally limit the balance between reactivity and structural stability. This work employs a coprecipitation-based approach to innovatively integrate morphological control and compositional gradient design, constructing a cubic O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM-3) cathode with a nickel-rich core/manganese-rich shell architecture. Benefiting from the superior kinetics of cubic particles and the synergistic effects of gradient structure on Na+ transport, surface passivation suppression, and transition metal stabilization, NFM-3 achieves breakthrough performance across a broad temperature range (−20 to 70 °C) and under air exposure conditions. At 25 °C and 0.1 C (2.0–4.0 V), it delivers an initial discharge capacity of 145.2 mAh·g−1 with 82.2 % capacity retention after 500 cycles at 1 C, while maintaining 87.3 mAh·g−1 at a high rate of 10 C. At a low temperature of −20 °C, the material retains a discharge capacity of 126.9 mAh g−1 with 85.5 % capacity retention. At an elevated temperature of 70 °C, the corresponding values are 141.4 mAh·g−1 and 22.5 %, respectively. Notably, after 30-day exposure to ambient conditions, NFM-3 preserves 93.4 % initial capacity while sustaining post-exposure cyclability (75.7 %) and high-rate capability (74.9 mAh·g−1 at 10 C). This work establishes a pioneering pathway toward highly reversible and environmentally resilient SIB cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信