超分子屏蔽和亲水工程解锁超稳定的mof生物催化剂的手性化合物的分辨率

IF 6.3 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Wenjing Zhu, Junyi He, Xuan Li, Qian Zhang, Juan Chen, Xin Yuan, Yingnan Ma, Bizhu Sun, Panliang Zhang, Kewen Tang
{"title":"超分子屏蔽和亲水工程解锁超稳定的mof生物催化剂的手性化合物的分辨率","authors":"Wenjing Zhu,&nbsp;Junyi He,&nbsp;Xuan Li,&nbsp;Qian Zhang,&nbsp;Juan Chen,&nbsp;Xin Yuan,&nbsp;Yingnan Ma,&nbsp;Bizhu Sun,&nbsp;Panliang Zhang,&nbsp;Kewen Tang","doi":"10.1016/j.jtice.2025.106435","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The kinetic resolution of enantiomers via enzymatic catalysis holds pivotal importance in chemical engineering for chiral compound production. Metal-organic frameworks (MOFs) have emerged as promising carriers for enzyme immobilization to enhance process efficiency in industrial biocatalysis. However, conventional MOFs immobilization often compromises enzymatic activity due to structural denaturation.</div></div><div><h3>Methods</h3><div>In this study, we developed a chemical engineering approach by covalently grafting methoxy polyethylene glycolamine (PEG<sub>N</sub>) onto mesoporous UiO-66-NH<sub>2</sub> (m-UiO<sub>N</sub>), constructing a reactor-like MOFs platform tailored for immobilization of Lipase PS from <em>Pseudomonas cepacia</em>. This PEGylation strategy engineered a biomimetic interface preserved enzyme conformation through supramolecular shielding, optimized mass transfer via meso-channel hydrophilicity modulation, and reinforced stability under operation conditions.</div></div><div><h3>Significant Findings</h3><div>The resultant PS@PEG<sub>N</sub>@m-UiO<sub>N</sub> exhibited breakthrough performance, achieving 5.2-fold activity enhancement over free lipase with 92% retention after 6 batch cycles. The hybrid catalyst demonstrated exceptional robustness across industrial-relevant conditions (50 - 70°C, organic solvents), showcasing its potential for scalable manufacturing of chiral intermediates. This interfacial engineering protocol provides a generalizable framework for designing next-generation immobilized enzyme systems in pharmaceutical and fine chemical production.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"179 ","pages":"Article 106435"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular shielding and hydrophilic engineering unlock ultra-stable MOF-biocatalysts for chiral compound resolution\",\"authors\":\"Wenjing Zhu,&nbsp;Junyi He,&nbsp;Xuan Li,&nbsp;Qian Zhang,&nbsp;Juan Chen,&nbsp;Xin Yuan,&nbsp;Yingnan Ma,&nbsp;Bizhu Sun,&nbsp;Panliang Zhang,&nbsp;Kewen Tang\",\"doi\":\"10.1016/j.jtice.2025.106435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The kinetic resolution of enantiomers via enzymatic catalysis holds pivotal importance in chemical engineering for chiral compound production. Metal-organic frameworks (MOFs) have emerged as promising carriers for enzyme immobilization to enhance process efficiency in industrial biocatalysis. However, conventional MOFs immobilization often compromises enzymatic activity due to structural denaturation.</div></div><div><h3>Methods</h3><div>In this study, we developed a chemical engineering approach by covalently grafting methoxy polyethylene glycolamine (PEG<sub>N</sub>) onto mesoporous UiO-66-NH<sub>2</sub> (m-UiO<sub>N</sub>), constructing a reactor-like MOFs platform tailored for immobilization of Lipase PS from <em>Pseudomonas cepacia</em>. This PEGylation strategy engineered a biomimetic interface preserved enzyme conformation through supramolecular shielding, optimized mass transfer via meso-channel hydrophilicity modulation, and reinforced stability under operation conditions.</div></div><div><h3>Significant Findings</h3><div>The resultant PS@PEG<sub>N</sub>@m-UiO<sub>N</sub> exhibited breakthrough performance, achieving 5.2-fold activity enhancement over free lipase with 92% retention after 6 batch cycles. The hybrid catalyst demonstrated exceptional robustness across industrial-relevant conditions (50 - 70°C, organic solvents), showcasing its potential for scalable manufacturing of chiral intermediates. This interfacial engineering protocol provides a generalizable framework for designing next-generation immobilized enzyme systems in pharmaceutical and fine chemical production.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"179 \",\"pages\":\"Article 106435\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107025004857\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025004857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

酶催化对映体的动力学拆分在化学工程中手性化合物生产中具有重要意义。金属-有机框架(mof)作为固定化酶的载体,在工业生物催化中具有很高的应用前景。然而,传统的mof固定化通常由于结构变性而损害酶活性。方法采用化学工程方法,将甲氧基聚乙二醇胺(PEGN)共价接枝到介孔UiO-66-NH2 (m- union)上,构建了用于固定化洋葱假单胞菌脂肪酶PS的反应器型mof平台。这种聚乙二醇化策略通过超分子屏蔽设计了一个仿生界面保存酶的构象,通过介孔亲水性调制优化了传质,并增强了操作条件下的稳定性。重要发现:所得PS@PEGN@m- union表现出突破性的性能,在6批循环后,其活性比游离脂肪酶提高了5.2倍,保留率为92%。该杂化催化剂在工业相关条件下(50 - 70°C,有机溶剂)表现出出色的稳健性,展示了其可扩展制造手性中间体的潜力。该界面工程协议为制药和精细化工生产中下一代固定化酶系统的设计提供了一个可推广的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supramolecular shielding and hydrophilic engineering unlock ultra-stable MOF-biocatalysts for chiral compound resolution

Supramolecular shielding and hydrophilic engineering unlock ultra-stable MOF-biocatalysts for chiral compound resolution

Background

The kinetic resolution of enantiomers via enzymatic catalysis holds pivotal importance in chemical engineering for chiral compound production. Metal-organic frameworks (MOFs) have emerged as promising carriers for enzyme immobilization to enhance process efficiency in industrial biocatalysis. However, conventional MOFs immobilization often compromises enzymatic activity due to structural denaturation.

Methods

In this study, we developed a chemical engineering approach by covalently grafting methoxy polyethylene glycolamine (PEGN) onto mesoporous UiO-66-NH2 (m-UiON), constructing a reactor-like MOFs platform tailored for immobilization of Lipase PS from Pseudomonas cepacia. This PEGylation strategy engineered a biomimetic interface preserved enzyme conformation through supramolecular shielding, optimized mass transfer via meso-channel hydrophilicity modulation, and reinforced stability under operation conditions.

Significant Findings

The resultant PS@PEGN@m-UiON exhibited breakthrough performance, achieving 5.2-fold activity enhancement over free lipase with 92% retention after 6 batch cycles. The hybrid catalyst demonstrated exceptional robustness across industrial-relevant conditions (50 - 70°C, organic solvents), showcasing its potential for scalable manufacturing of chiral intermediates. This interfacial engineering protocol provides a generalizable framework for designing next-generation immobilized enzyme systems in pharmaceutical and fine chemical production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信