战略性轻稀土合金化提高高强度铝锂合金的抗凝固开裂性:综合实验模拟方法

IF 7.9 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Youjie Guo , Yihao Wang , Fangzhou Qi , Liang Zhang , Song Pang , Ming Chen , Qi Li , Junmin Zhan , Quande Li , Jiawei Sun , Yuchuan Huang , Bo Ma , Yixiao Wang , Guohua Wu
{"title":"战略性轻稀土合金化提高高强度铝锂合金的抗凝固开裂性:综合实验模拟方法","authors":"Youjie Guo ,&nbsp;Yihao Wang ,&nbsp;Fangzhou Qi ,&nbsp;Liang Zhang ,&nbsp;Song Pang ,&nbsp;Ming Chen ,&nbsp;Qi Li ,&nbsp;Junmin Zhan ,&nbsp;Quande Li ,&nbsp;Jiawei Sun ,&nbsp;Yuchuan Huang ,&nbsp;Bo Ma ,&nbsp;Yixiao Wang ,&nbsp;Guohua Wu","doi":"10.1016/j.matdes.2025.114826","DOIUrl":null,"url":null,"abstract":"<div><div>Although Al-Li alloys possess advantages of low density and high stiffness, their severe hot cracking susceptibility (HCS) limits practical applications. Herein, we attempted to decrease HCS without sacrificing mechanical performance by replacing Sc with cost-effective light rare earth (LRE) elements. Results showed that the introduction of La, Ce, Nd, and Pr reduces the HCS to half that of the Base alloy due to grain refinement and melt purification. Finite element analysis (FEA) revealed that compared to elongated LRE phases characterized by high aspect ratios and interfacial curvature, blocky LRE phases with lower aspect ratios and interfacial curvature hinder crack propagation, leading to improved cracking resistance. Among the low-HCS variants, Pr-modified alloy shows remarkable yield strength of 398 MPa, exhibiting competitiveness compared to existing Sc-containing alloys. More importantly, Pr-modified alloy achieves a significant cost reduction of ∼27 %. The narrowed δʹ-Al<sub>3</sub>Li precipitation free zone (PFZ) and the uniformly distributed fine T<sub>1</sub> precipitates contribute to the promising mechanical properties of Pr-modified alloy. First-principles calculations indicated that the higher vacancy binding energies of Nd and Pr atoms suppress δʹ-PFZ coarsening, while their doping increases the coarsening energy barrier of T<sub>1</sub> precipitates. These benefits mitigate stress concentration and enhance deformation compatibility.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"259 ","pages":"Article 114826"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing solidification cracking resistance in high-strength Al-Li alloys via strategic light rare earth alloying: An integrated experiment-simulation approach\",\"authors\":\"Youjie Guo ,&nbsp;Yihao Wang ,&nbsp;Fangzhou Qi ,&nbsp;Liang Zhang ,&nbsp;Song Pang ,&nbsp;Ming Chen ,&nbsp;Qi Li ,&nbsp;Junmin Zhan ,&nbsp;Quande Li ,&nbsp;Jiawei Sun ,&nbsp;Yuchuan Huang ,&nbsp;Bo Ma ,&nbsp;Yixiao Wang ,&nbsp;Guohua Wu\",\"doi\":\"10.1016/j.matdes.2025.114826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although Al-Li alloys possess advantages of low density and high stiffness, their severe hot cracking susceptibility (HCS) limits practical applications. Herein, we attempted to decrease HCS without sacrificing mechanical performance by replacing Sc with cost-effective light rare earth (LRE) elements. Results showed that the introduction of La, Ce, Nd, and Pr reduces the HCS to half that of the Base alloy due to grain refinement and melt purification. Finite element analysis (FEA) revealed that compared to elongated LRE phases characterized by high aspect ratios and interfacial curvature, blocky LRE phases with lower aspect ratios and interfacial curvature hinder crack propagation, leading to improved cracking resistance. Among the low-HCS variants, Pr-modified alloy shows remarkable yield strength of 398 MPa, exhibiting competitiveness compared to existing Sc-containing alloys. More importantly, Pr-modified alloy achieves a significant cost reduction of ∼27 %. The narrowed δʹ-Al<sub>3</sub>Li precipitation free zone (PFZ) and the uniformly distributed fine T<sub>1</sub> precipitates contribute to the promising mechanical properties of Pr-modified alloy. First-principles calculations indicated that the higher vacancy binding energies of Nd and Pr atoms suppress δʹ-PFZ coarsening, while their doping increases the coarsening energy barrier of T<sub>1</sub> precipitates. These benefits mitigate stress concentration and enhance deformation compatibility.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"259 \",\"pages\":\"Article 114826\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127525012468\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525012468","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然铝锂合金具有密度低、刚度高的优点,但其严重的热裂敏感性限制了其实际应用。在此,我们试图在不牺牲机械性能的情况下,通过用具有成本效益的轻稀土(LRE)元素取代Sc来降低HCS。结果表明,La、Ce、Nd和Pr的引入,由于晶粒细化和熔体净化,HCS降低到基体的一半。有限元分析(FEA)表明,与具有高长径比和界面曲率的细长LRE相相比,具有低长径比和界面曲率的块状LRE相阻碍了裂纹扩展,从而提高了抗裂性。在低hcs变体中,pr改性合金的屈服强度达到了398 MPa,与现有的含sc合金相比具有较强的竞争力。更重要的是,pr改性合金的成本显著降低了约27%。缩小的δ′-Al3Li自由析出区(PFZ)和均匀分布的细小T1相是pr改性合金具有良好力学性能的原因。第一性原理计算表明,Nd和Pr原子较高的空位结合能抑制了δ′-PFZ的粗化,而它们的掺杂增加了T1析出相的粗化能垒。这些优点减轻了应力集中,增强了变形兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing solidification cracking resistance in high-strength Al-Li alloys via strategic light rare earth alloying: An integrated experiment-simulation approach

Enhancing solidification cracking resistance in high-strength Al-Li alloys via strategic light rare earth alloying: An integrated experiment-simulation approach
Although Al-Li alloys possess advantages of low density and high stiffness, their severe hot cracking susceptibility (HCS) limits practical applications. Herein, we attempted to decrease HCS without sacrificing mechanical performance by replacing Sc with cost-effective light rare earth (LRE) elements. Results showed that the introduction of La, Ce, Nd, and Pr reduces the HCS to half that of the Base alloy due to grain refinement and melt purification. Finite element analysis (FEA) revealed that compared to elongated LRE phases characterized by high aspect ratios and interfacial curvature, blocky LRE phases with lower aspect ratios and interfacial curvature hinder crack propagation, leading to improved cracking resistance. Among the low-HCS variants, Pr-modified alloy shows remarkable yield strength of 398 MPa, exhibiting competitiveness compared to existing Sc-containing alloys. More importantly, Pr-modified alloy achieves a significant cost reduction of ∼27 %. The narrowed δʹ-Al3Li precipitation free zone (PFZ) and the uniformly distributed fine T1 precipitates contribute to the promising mechanical properties of Pr-modified alloy. First-principles calculations indicated that the higher vacancy binding energies of Nd and Pr atoms suppress δʹ-PFZ coarsening, while their doping increases the coarsening energy barrier of T1 precipitates. These benefits mitigate stress concentration and enhance deformation compatibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信