{"title":"弗劳德数对陡直弯道内二次流发展演变的影响:实验与数值研究","authors":"Chengwei Hu , Yujiao Liu , Minghui Yu","doi":"10.1016/j.advwatres.2025.105126","DOIUrl":null,"url":null,"abstract":"<div><div>Meandering rivers sculpt landscapes and foster diverse ecosystems, with secondary flows in bends exerting a pivotal influence on sediment transport and channel morphology. Although the Froude number typically remains below 0.3 in natural meanders, the interplay of secondary flows under these low-Froude conditions is still poorly understood. This study addresses this knowledge gap by systematically examining the influence of Froude numbers (<em>Fr</em> = 0.12-0.21) on secondary flow structures in sharply curved channels through high-resolution flume experiments and numerical simulations. Results reveal that even slight variations in Froude number can markedly alter vortex dynamics and secondary flow complexity, underscoring a delicate balance between inertial and turbulent forces. In particular, the stability of S2-type secondary flows depends on the precise alignment of advective, centrifugal, and turbulence-induced vorticity. Minor shifts in inertial forcing can rapidly destabilize S2, leading to significant changes in velocity distributions. Additionally, a time or spatial lag between the onset of secondary circulation and the point of maximum velocity inversion points to a dynamic, two-way feedback between the secondary flow and the main flow, evolving from robust vortex growth at lower <em>Fr</em> to flow decay at higher <em>Fr</em>. These findings advance our understanding of secondary flow mechanisms in natural rivers and offer practical insights for river engineering and flood management, informing more effective strategies for sediment control and bank stability.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"206 ","pages":"Article 105126"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of froude number on the development and evolution of secondary flows in a sharply curved bend: An experimental and numerical study\",\"authors\":\"Chengwei Hu , Yujiao Liu , Minghui Yu\",\"doi\":\"10.1016/j.advwatres.2025.105126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meandering rivers sculpt landscapes and foster diverse ecosystems, with secondary flows in bends exerting a pivotal influence on sediment transport and channel morphology. Although the Froude number typically remains below 0.3 in natural meanders, the interplay of secondary flows under these low-Froude conditions is still poorly understood. This study addresses this knowledge gap by systematically examining the influence of Froude numbers (<em>Fr</em> = 0.12-0.21) on secondary flow structures in sharply curved channels through high-resolution flume experiments and numerical simulations. Results reveal that even slight variations in Froude number can markedly alter vortex dynamics and secondary flow complexity, underscoring a delicate balance between inertial and turbulent forces. In particular, the stability of S2-type secondary flows depends on the precise alignment of advective, centrifugal, and turbulence-induced vorticity. Minor shifts in inertial forcing can rapidly destabilize S2, leading to significant changes in velocity distributions. Additionally, a time or spatial lag between the onset of secondary circulation and the point of maximum velocity inversion points to a dynamic, two-way feedback between the secondary flow and the main flow, evolving from robust vortex growth at lower <em>Fr</em> to flow decay at higher <em>Fr</em>. These findings advance our understanding of secondary flow mechanisms in natural rivers and offer practical insights for river engineering and flood management, informing more effective strategies for sediment control and bank stability.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"206 \",\"pages\":\"Article 105126\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170825002404\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825002404","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Influence of froude number on the development and evolution of secondary flows in a sharply curved bend: An experimental and numerical study
Meandering rivers sculpt landscapes and foster diverse ecosystems, with secondary flows in bends exerting a pivotal influence on sediment transport and channel morphology. Although the Froude number typically remains below 0.3 in natural meanders, the interplay of secondary flows under these low-Froude conditions is still poorly understood. This study addresses this knowledge gap by systematically examining the influence of Froude numbers (Fr = 0.12-0.21) on secondary flow structures in sharply curved channels through high-resolution flume experiments and numerical simulations. Results reveal that even slight variations in Froude number can markedly alter vortex dynamics and secondary flow complexity, underscoring a delicate balance between inertial and turbulent forces. In particular, the stability of S2-type secondary flows depends on the precise alignment of advective, centrifugal, and turbulence-induced vorticity. Minor shifts in inertial forcing can rapidly destabilize S2, leading to significant changes in velocity distributions. Additionally, a time or spatial lag between the onset of secondary circulation and the point of maximum velocity inversion points to a dynamic, two-way feedback between the secondary flow and the main flow, evolving from robust vortex growth at lower Fr to flow decay at higher Fr. These findings advance our understanding of secondary flow mechanisms in natural rivers and offer practical insights for river engineering and flood management, informing more effective strategies for sediment control and bank stability.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes