利用传统数据驱动的动态基线和可实现预测估算大陆尺度土壤有机碳赤字

IF 6.6 1区 农林科学 Q1 SOIL SCIENCE
Anil C. Somenahally , Laxman Bokati , Saurav Kumar
{"title":"利用传统数据驱动的动态基线和可实现预测估算大陆尺度土壤有机碳赤字","authors":"Anil C. Somenahally ,&nbsp;Laxman Bokati ,&nbsp;Saurav Kumar","doi":"10.1016/j.geoderma.2025.117515","DOIUrl":null,"url":null,"abstract":"<div><div>Soil organic carbon (SOC) stocks vary temporally, across land use, climate, and soil type, making it challenging to model current stocks (SOC<sub>cs</sub>). The attainable steady-state stock (SOC<sub>at</sub>), the practically achievable under optimal soil, climate, and management conditions, remains dynamic because soil-loss processes continually modify the biophysical limits on maximum storage, causing SOC<sub>at</sub> to shift over time. Robust methods are required to integrate temporal dynamics, model and extrapolate SOC<sub>cs</sub> and SOC<sub>at</sub>, and quantify current deficits (SOC<sub>def</sub>), the unrealized sequestration capacity. We used legacy SOC observations along with time-adjustment and data-driven modeling to generate spatially explicit projections of 2024 SOC<sub>cs</sub>. We estimated SOC<sub>at</sub> by selecting the maximum SOC value from a spatially constrained similarity matrix of projected SOC<sub>cs</sub>, then used both reference layers to derive location-specific SOC<sub>def</sub>. The resulting maps revealed extensive heterogeneity among the land use types and across regions. Mean SOC<sub>def</sub> of 3.46 kg m<sup>–2</sup> was noted for all croplands in continental United States. Larger deficits clustered on soil orders of Mollisols and Alfisols in the Midwest region, but were lower than anticipated, alluding to depleted SOC<sub>cs</sub> and SOC<sub>at</sub>. Degraded grasslands showed similarly reduced SOC<sub>at</sub>, underscoring the need to recalibrate sequestration targets based on current projected steady states. The results underscore the framework’s novelty as it effectively integrates temporal dynamics of soil carbon stocks and converts soil-carbon storage processes into actionable, farm-level sequestration targets. By generating empirically derived, region-specific SOC<sub>cs</sub>–SOC<sub>at</sub>–SOC<sub>def</sub> benchmarks, the framework offers precise reference points that align management incentives, climate-smart policies, and site-specific restoration strategies.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"462 ","pages":"Article 117515"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating soil organic carbon deficits at the continental scale using legacy-data-driven dynamic baseline and attainable projections\",\"authors\":\"Anil C. Somenahally ,&nbsp;Laxman Bokati ,&nbsp;Saurav Kumar\",\"doi\":\"10.1016/j.geoderma.2025.117515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil organic carbon (SOC) stocks vary temporally, across land use, climate, and soil type, making it challenging to model current stocks (SOC<sub>cs</sub>). The attainable steady-state stock (SOC<sub>at</sub>), the practically achievable under optimal soil, climate, and management conditions, remains dynamic because soil-loss processes continually modify the biophysical limits on maximum storage, causing SOC<sub>at</sub> to shift over time. Robust methods are required to integrate temporal dynamics, model and extrapolate SOC<sub>cs</sub> and SOC<sub>at</sub>, and quantify current deficits (SOC<sub>def</sub>), the unrealized sequestration capacity. We used legacy SOC observations along with time-adjustment and data-driven modeling to generate spatially explicit projections of 2024 SOC<sub>cs</sub>. We estimated SOC<sub>at</sub> by selecting the maximum SOC value from a spatially constrained similarity matrix of projected SOC<sub>cs</sub>, then used both reference layers to derive location-specific SOC<sub>def</sub>. The resulting maps revealed extensive heterogeneity among the land use types and across regions. Mean SOC<sub>def</sub> of 3.46 kg m<sup>–2</sup> was noted for all croplands in continental United States. Larger deficits clustered on soil orders of Mollisols and Alfisols in the Midwest region, but were lower than anticipated, alluding to depleted SOC<sub>cs</sub> and SOC<sub>at</sub>. Degraded grasslands showed similarly reduced SOC<sub>at</sub>, underscoring the need to recalibrate sequestration targets based on current projected steady states. The results underscore the framework’s novelty as it effectively integrates temporal dynamics of soil carbon stocks and converts soil-carbon storage processes into actionable, farm-level sequestration targets. By generating empirically derived, region-specific SOC<sub>cs</sub>–SOC<sub>at</sub>–SOC<sub>def</sub> benchmarks, the framework offers precise reference points that align management incentives, climate-smart policies, and site-specific restoration strategies.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"462 \",\"pages\":\"Article 117515\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125003568\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125003568","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤有机碳(SOC)储量因土地利用、气候和土壤类型的不同而随时间变化,因此对当前储量(socs)进行建模具有挑战性。可达到的稳态储量(SOCat),即在最佳土壤、气候和管理条件下实际可达到的储量,仍然是动态的,因为土壤流失过程不断修改最大储量的生物物理限制,导致SOCat随时间变化。需要稳健的方法来整合时间动态,建模和推断socs和SOCat,并量化当前赤字(SOCdef),即未实现的封存能力。我们使用传统的SOC观测数据以及时间调整和数据驱动建模来生成2024年socs的空间明确预测。我们通过从投影socs的空间约束相似矩阵中选择最大SOC值来估计soccat,然后使用两个参考层来推导特定位置的SOCdef。结果显示,土地利用类型和区域之间存在广泛的异质性。美国大陆所有农田的平均SOCdef为3.46 kg m-2。中西部地区Mollisols和Alfisols土壤目的亏缺较大,但低于预期,暗示了socs和SOCat的亏缺。退化草原的SOCat也出现了类似的减少,这表明需要根据目前预测的稳定状态重新校准固存目标。结果强调了该框架的新颖性,因为它有效地整合了土壤碳储量的时间动态,并将土壤碳储存过程转化为可操作的农场级封存目标。通过生成经验推导的、特定区域的socs - socat - socdef基准,该框架提供了精确的参考点,以协调管理激励、气候智能型政策和特定场地的恢复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating soil organic carbon deficits at the continental scale using legacy-data-driven dynamic baseline and attainable projections
Soil organic carbon (SOC) stocks vary temporally, across land use, climate, and soil type, making it challenging to model current stocks (SOCcs). The attainable steady-state stock (SOCat), the practically achievable under optimal soil, climate, and management conditions, remains dynamic because soil-loss processes continually modify the biophysical limits on maximum storage, causing SOCat to shift over time. Robust methods are required to integrate temporal dynamics, model and extrapolate SOCcs and SOCat, and quantify current deficits (SOCdef), the unrealized sequestration capacity. We used legacy SOC observations along with time-adjustment and data-driven modeling to generate spatially explicit projections of 2024 SOCcs. We estimated SOCat by selecting the maximum SOC value from a spatially constrained similarity matrix of projected SOCcs, then used both reference layers to derive location-specific SOCdef. The resulting maps revealed extensive heterogeneity among the land use types and across regions. Mean SOCdef of 3.46 kg m–2 was noted for all croplands in continental United States. Larger deficits clustered on soil orders of Mollisols and Alfisols in the Midwest region, but were lower than anticipated, alluding to depleted SOCcs and SOCat. Degraded grasslands showed similarly reduced SOCat, underscoring the need to recalibrate sequestration targets based on current projected steady states. The results underscore the framework’s novelty as it effectively integrates temporal dynamics of soil carbon stocks and converts soil-carbon storage processes into actionable, farm-level sequestration targets. By generating empirically derived, region-specific SOCcs–SOCat–SOCdef benchmarks, the framework offers precise reference points that align management incentives, climate-smart policies, and site-specific restoration strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信