Ganghua Yang , Haowen Kang , Yuanzheng Zhu , Hengyu Wu , Minchen Zhang , Xinghong Zeng , Ying Peng , Wenbing Wan , Yangyan Yi
{"title":"细菌微环境反应导弹微针调节免疫并穿透生物膜用于糖尿病伤口治疗","authors":"Ganghua Yang , Haowen Kang , Yuanzheng Zhu , Hengyu Wu , Minchen Zhang , Xinghong Zeng , Ying Peng , Wenbing Wan , Yangyan Yi","doi":"10.1016/j.bioactmat.2025.09.017","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wounds, affecting ∼25 % of patients with diabetes, present a therapeutic challenge due to persistent inflammation driven by MCP-1-mediated immune dysregulation and bacterial biofilm formation. We developed a bilayer microneedle system (DAg/HTMS-MNs) combining dextran-modified silver nanoparticles for deep-tissue antibacterial action with heparin-coated taurine-loaded microspheres for immunomodulation. The upper microneedle segment enables biofilm penetration through lectin targeting and gas propulsion, while the lower segment implements a “global decompression-local enhancement” strategy: heparin sequesters MCP-1 to reduce inflammatory cell recruitment, and sustained taurine release promotes macrophage reprogramming to M2 phenotypes. Systematic evaluation demonstrated simultaneous biofilm eradication, inflammation resolution (2-fold enhanced M2 polarization), and accelerated wound healing. This “missile-guided” approach represents a paradigm shift in diabetic wound therapy by concurrently addressing infection control, oxidative stress, and immune dysregulation in a spatially and temporally controlled manner.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"55 ","pages":"Pages 426-445"},"PeriodicalIF":18.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacteria microenvironment-responsive missile microneedles modulate immunity and penetrate biofilm for diabetic wound therapy\",\"authors\":\"Ganghua Yang , Haowen Kang , Yuanzheng Zhu , Hengyu Wu , Minchen Zhang , Xinghong Zeng , Ying Peng , Wenbing Wan , Yangyan Yi\",\"doi\":\"10.1016/j.bioactmat.2025.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic wounds, affecting ∼25 % of patients with diabetes, present a therapeutic challenge due to persistent inflammation driven by MCP-1-mediated immune dysregulation and bacterial biofilm formation. We developed a bilayer microneedle system (DAg/HTMS-MNs) combining dextran-modified silver nanoparticles for deep-tissue antibacterial action with heparin-coated taurine-loaded microspheres for immunomodulation. The upper microneedle segment enables biofilm penetration through lectin targeting and gas propulsion, while the lower segment implements a “global decompression-local enhancement” strategy: heparin sequesters MCP-1 to reduce inflammatory cell recruitment, and sustained taurine release promotes macrophage reprogramming to M2 phenotypes. Systematic evaluation demonstrated simultaneous biofilm eradication, inflammation resolution (2-fold enhanced M2 polarization), and accelerated wound healing. This “missile-guided” approach represents a paradigm shift in diabetic wound therapy by concurrently addressing infection control, oxidative stress, and immune dysregulation in a spatially and temporally controlled manner.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"55 \",\"pages\":\"Pages 426-445\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25004232\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25004232","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Bacteria microenvironment-responsive missile microneedles modulate immunity and penetrate biofilm for diabetic wound therapy
Diabetic wounds, affecting ∼25 % of patients with diabetes, present a therapeutic challenge due to persistent inflammation driven by MCP-1-mediated immune dysregulation and bacterial biofilm formation. We developed a bilayer microneedle system (DAg/HTMS-MNs) combining dextran-modified silver nanoparticles for deep-tissue antibacterial action with heparin-coated taurine-loaded microspheres for immunomodulation. The upper microneedle segment enables biofilm penetration through lectin targeting and gas propulsion, while the lower segment implements a “global decompression-local enhancement” strategy: heparin sequesters MCP-1 to reduce inflammatory cell recruitment, and sustained taurine release promotes macrophage reprogramming to M2 phenotypes. Systematic evaluation demonstrated simultaneous biofilm eradication, inflammation resolution (2-fold enhanced M2 polarization), and accelerated wound healing. This “missile-guided” approach represents a paradigm shift in diabetic wound therapy by concurrently addressing infection control, oxidative stress, and immune dysregulation in a spatially and temporally controlled manner.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.