T.-M. Bründl , J. Terwisscha van Scheltinga , S. Cazaux , K.-J. Chuang , H. Linnartz
{"title":"辐照的土卫二冰类似物的光化学:对臭氧和三氧化二碳形成的影响","authors":"T.-M. Bründl , J. Terwisscha van Scheltinga , S. Cazaux , K.-J. Chuang , H. Linnartz","doi":"10.1016/j.icarus.2025.116751","DOIUrl":null,"url":null,"abstract":"<div><div>Detailed observations of Enceladus by the Cassini spacecraft revealed its astrobiological potential and transformed our perception of ocean worlds in the Solar System. Beneath Enceladus’ icy crust lies a warm ocean sustained by tidal heating. This ocean expels subsurface material through fissures at the south pole region into space as plumes. The particles in these plumes reaccrete on Enceladus’ surface, while some of the volatiles present in the sub-surface ocean diffuse through the ice shell to reach the surface. In this study, we irradiated thin Enceladus ice analogues in an ultra-high vacuum chamber optimised for ice chemistry at a surface temperature of 70 <span><math><mo>±</mo></math></span> 2 K and compared the resulting composition with ices typical to the ISM (15 K). We studied the irradiation of ices composed of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>, <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> mixtures as a function of wavelength by using two different radiation sources that cover high and low photon energy ranges: The microwave-discharge hydrogen-flow lamp (MDHL) generating vacuum-ultraviolet (VUV) light, that is, between 115 - 180 nm, and the solar radiation Xe-arc lamp (SRL), simulating the solar broadband radiation from 200 nm - 1800 nm. Upon irradiation, solid-state photoproducts were identified using a Fourier-transform infrared (FTIR) spectrometer in the mid-infrared range (4000 - 700 <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or 2.5 - 14.3 <span><math><mi>μ</mi></math></span>m). Sublimating gas-phase species were tracked using a quadrupole mass spectrometer (QMS). At 70 K, energetic photons from the MDHL formed new species such as <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in an <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O:CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> ice matrix due to the clustering of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> at elevated temperatures. Hereby, dissociation of segregated <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> provides the necessary oxygen atoms to form <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> via the enhanced mobility and addition reaction of O-atoms. At 15 K, <span><math><mrow><mi>CO</mi><mo>,</mo><msup><mrow><mi>OCN</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>CO</mi><mo>,</mo><msub><mrow><mi>CH</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>OH</mi></mrow></math></span>, HCOOH and possibly <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span> were induced by VUV-photons. Similarly, these species were detected at 70 K with a tentative assignment for HCOOH and <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span>. The SRL caused no chemical evolution of the ice due to insufficient photon energies. In conclusion, we predict the formation of ozone by gardening of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-rich or mixed <span><math><mrow><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span> ice, found, for example, in-between the tiger stripes on Enceladus or on other icy bodies in our Solar System with surface temperatures cooler than 88 K.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"444 ","pages":"Article 116751"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The photochemistry of irradiated Enceladus ice analogues: Implications for the formation of ozone and carbon trioxide\",\"authors\":\"T.-M. Bründl , J. Terwisscha van Scheltinga , S. Cazaux , K.-J. Chuang , H. Linnartz\",\"doi\":\"10.1016/j.icarus.2025.116751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Detailed observations of Enceladus by the Cassini spacecraft revealed its astrobiological potential and transformed our perception of ocean worlds in the Solar System. Beneath Enceladus’ icy crust lies a warm ocean sustained by tidal heating. This ocean expels subsurface material through fissures at the south pole region into space as plumes. The particles in these plumes reaccrete on Enceladus’ surface, while some of the volatiles present in the sub-surface ocean diffuse through the ice shell to reach the surface. In this study, we irradiated thin Enceladus ice analogues in an ultra-high vacuum chamber optimised for ice chemistry at a surface temperature of 70 <span><math><mo>±</mo></math></span> 2 K and compared the resulting composition with ices typical to the ISM (15 K). We studied the irradiation of ices composed of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>, <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> mixtures as a function of wavelength by using two different radiation sources that cover high and low photon energy ranges: The microwave-discharge hydrogen-flow lamp (MDHL) generating vacuum-ultraviolet (VUV) light, that is, between 115 - 180 nm, and the solar radiation Xe-arc lamp (SRL), simulating the solar broadband radiation from 200 nm - 1800 nm. Upon irradiation, solid-state photoproducts were identified using a Fourier-transform infrared (FTIR) spectrometer in the mid-infrared range (4000 - 700 <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or 2.5 - 14.3 <span><math><mi>μ</mi></math></span>m). Sublimating gas-phase species were tracked using a quadrupole mass spectrometer (QMS). At 70 K, energetic photons from the MDHL formed new species such as <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in an <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O:CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> ice matrix due to the clustering of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> at elevated temperatures. Hereby, dissociation of segregated <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> provides the necessary oxygen atoms to form <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> via the enhanced mobility and addition reaction of O-atoms. At 15 K, <span><math><mrow><mi>CO</mi><mo>,</mo><msup><mrow><mi>OCN</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>CO</mi><mo>,</mo><msub><mrow><mi>CH</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>OH</mi></mrow></math></span>, HCOOH and possibly <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span> were induced by VUV-photons. Similarly, these species were detected at 70 K with a tentative assignment for HCOOH and <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span>. The SRL caused no chemical evolution of the ice due to insufficient photon energies. In conclusion, we predict the formation of ozone by gardening of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-rich or mixed <span><math><mrow><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span> ice, found, for example, in-between the tiger stripes on Enceladus or on other icy bodies in our Solar System with surface temperatures cooler than 88 K.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"444 \",\"pages\":\"Article 116751\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525002994\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525002994","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The photochemistry of irradiated Enceladus ice analogues: Implications for the formation of ozone and carbon trioxide
Detailed observations of Enceladus by the Cassini spacecraft revealed its astrobiological potential and transformed our perception of ocean worlds in the Solar System. Beneath Enceladus’ icy crust lies a warm ocean sustained by tidal heating. This ocean expels subsurface material through fissures at the south pole region into space as plumes. The particles in these plumes reaccrete on Enceladus’ surface, while some of the volatiles present in the sub-surface ocean diffuse through the ice shell to reach the surface. In this study, we irradiated thin Enceladus ice analogues in an ultra-high vacuum chamber optimised for ice chemistry at a surface temperature of 70 2 K and compared the resulting composition with ices typical to the ISM (15 K). We studied the irradiation of ices composed of , , and mixtures as a function of wavelength by using two different radiation sources that cover high and low photon energy ranges: The microwave-discharge hydrogen-flow lamp (MDHL) generating vacuum-ultraviolet (VUV) light, that is, between 115 - 180 nm, and the solar radiation Xe-arc lamp (SRL), simulating the solar broadband radiation from 200 nm - 1800 nm. Upon irradiation, solid-state photoproducts were identified using a Fourier-transform infrared (FTIR) spectrometer in the mid-infrared range (4000 - 700 or 2.5 - 14.3 m). Sublimating gas-phase species were tracked using a quadrupole mass spectrometer (QMS). At 70 K, energetic photons from the MDHL formed new species such as and in an ice matrix due to the clustering of at elevated temperatures. Hereby, dissociation of segregated provides the necessary oxygen atoms to form via the enhanced mobility and addition reaction of O-atoms. At 15 K, , HCOOH and possibly were induced by VUV-photons. Similarly, these species were detected at 70 K with a tentative assignment for HCOOH and . The SRL caused no chemical evolution of the ice due to insufficient photon energies. In conclusion, we predict the formation of ozone by gardening of -rich or mixed ice, found, for example, in-between the tiger stripes on Enceladus or on other icy bodies in our Solar System with surface temperatures cooler than 88 K.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.