辐照的土卫二冰类似物的光化学:对臭氧和三氧化二碳形成的影响

IF 3 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
T.-M. Bründl , J. Terwisscha van Scheltinga , S. Cazaux , K.-J. Chuang , H. Linnartz
{"title":"辐照的土卫二冰类似物的光化学:对臭氧和三氧化二碳形成的影响","authors":"T.-M. Bründl ,&nbsp;J. Terwisscha van Scheltinga ,&nbsp;S. Cazaux ,&nbsp;K.-J. Chuang ,&nbsp;H. Linnartz","doi":"10.1016/j.icarus.2025.116751","DOIUrl":null,"url":null,"abstract":"<div><div>Detailed observations of Enceladus by the Cassini spacecraft revealed its astrobiological potential and transformed our perception of ocean worlds in the Solar System. Beneath Enceladus’ icy crust lies a warm ocean sustained by tidal heating. This ocean expels subsurface material through fissures at the south pole region into space as plumes. The particles in these plumes reaccrete on Enceladus’ surface, while some of the volatiles present in the sub-surface ocean diffuse through the ice shell to reach the surface. In this study, we irradiated thin Enceladus ice analogues in an ultra-high vacuum chamber optimised for ice chemistry at a surface temperature of 70 <span><math><mo>±</mo></math></span> 2 K and compared the resulting composition with ices typical to the ISM (15 K). We studied the irradiation of ices composed of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>, <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> mixtures as a function of wavelength by using two different radiation sources that cover high and low photon energy ranges: The microwave-discharge hydrogen-flow lamp (MDHL) generating vacuum-ultraviolet (VUV) light, that is, between 115 - 180 nm, and the solar radiation Xe-arc lamp (SRL), simulating the solar broadband radiation from 200 nm - 1800 nm. Upon irradiation, solid-state photoproducts were identified using a Fourier-transform infrared (FTIR) spectrometer in the mid-infrared range (4000 - 700 <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or 2.5 - 14.3 <span><math><mi>μ</mi></math></span>m). Sublimating gas-phase species were tracked using a quadrupole mass spectrometer (QMS). At 70 K, energetic photons from the MDHL formed new species such as <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in an <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O:CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> ice matrix due to the clustering of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> at elevated temperatures. Hereby, dissociation of segregated <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> provides the necessary oxygen atoms to form <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> via the enhanced mobility and addition reaction of O-atoms. At 15 K, <span><math><mrow><mi>CO</mi><mo>,</mo><msup><mrow><mi>OCN</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>CO</mi><mo>,</mo><msub><mrow><mi>CH</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>OH</mi></mrow></math></span>, HCOOH and possibly <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span> were induced by VUV-photons. Similarly, these species were detected at 70 K with a tentative assignment for HCOOH and <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span>. The SRL caused no chemical evolution of the ice due to insufficient photon energies. In conclusion, we predict the formation of ozone by gardening of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-rich or mixed <span><math><mrow><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span> ice, found, for example, in-between the tiger stripes on Enceladus or on other icy bodies in our Solar System with surface temperatures cooler than 88 K.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"444 ","pages":"Article 116751"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The photochemistry of irradiated Enceladus ice analogues: Implications for the formation of ozone and carbon trioxide\",\"authors\":\"T.-M. Bründl ,&nbsp;J. Terwisscha van Scheltinga ,&nbsp;S. Cazaux ,&nbsp;K.-J. Chuang ,&nbsp;H. Linnartz\",\"doi\":\"10.1016/j.icarus.2025.116751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Detailed observations of Enceladus by the Cassini spacecraft revealed its astrobiological potential and transformed our perception of ocean worlds in the Solar System. Beneath Enceladus’ icy crust lies a warm ocean sustained by tidal heating. This ocean expels subsurface material through fissures at the south pole region into space as plumes. The particles in these plumes reaccrete on Enceladus’ surface, while some of the volatiles present in the sub-surface ocean diffuse through the ice shell to reach the surface. In this study, we irradiated thin Enceladus ice analogues in an ultra-high vacuum chamber optimised for ice chemistry at a surface temperature of 70 <span><math><mo>±</mo></math></span> 2 K and compared the resulting composition with ices typical to the ISM (15 K). We studied the irradiation of ices composed of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>, <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> mixtures as a function of wavelength by using two different radiation sources that cover high and low photon energy ranges: The microwave-discharge hydrogen-flow lamp (MDHL) generating vacuum-ultraviolet (VUV) light, that is, between 115 - 180 nm, and the solar radiation Xe-arc lamp (SRL), simulating the solar broadband radiation from 200 nm - 1800 nm. Upon irradiation, solid-state photoproducts were identified using a Fourier-transform infrared (FTIR) spectrometer in the mid-infrared range (4000 - 700 <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or 2.5 - 14.3 <span><math><mi>μ</mi></math></span>m). Sublimating gas-phase species were tracked using a quadrupole mass spectrometer (QMS). At 70 K, energetic photons from the MDHL formed new species such as <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in an <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O:CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>NH</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> ice matrix due to the clustering of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> at elevated temperatures. Hereby, dissociation of segregated <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> provides the necessary oxygen atoms to form <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> via the enhanced mobility and addition reaction of O-atoms. At 15 K, <span><math><mrow><mi>CO</mi><mo>,</mo><msup><mrow><mi>OCN</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>CO</mi><mo>,</mo><msub><mrow><mi>CH</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>OH</mi></mrow></math></span>, HCOOH and possibly <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span> were induced by VUV-photons. Similarly, these species were detected at 70 K with a tentative assignment for HCOOH and <span><math><mrow><msub><mrow><mi>NH</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>OH</mi></mrow></math></span>. The SRL caused no chemical evolution of the ice due to insufficient photon energies. In conclusion, we predict the formation of ozone by gardening of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-rich or mixed <span><math><mrow><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span> ice, found, for example, in-between the tiger stripes on Enceladus or on other icy bodies in our Solar System with surface temperatures cooler than 88 K.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"444 \",\"pages\":\"Article 116751\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525002994\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525002994","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

卡西尼号宇宙飞船对土卫二的详细观测揭示了它的天体生物学潜力,并改变了我们对太阳系海洋世界的看法。在土卫二冰冷的地壳下,有一个由潮汐加热维持的温暖海洋。这片海洋通过南极地区的裂缝将地下物质以羽流的形式喷射到太空中。这些羽流中的颗粒在土卫二表面发生反应,而存在于地下海洋中的一些挥发物则通过冰壳扩散到土卫二表面。在这项研究中,我们在一个表面温度为70±2 K的超高真空室中辐照了土卫二薄冰类似物,并将所得成分与ISM (15 K)典型冰进行了比较。研究了由H2O、CO2和NH3混合物组成的冰的辐照随波长的变化规律,采用了两种不同的辐射源,分别覆盖了高、低光子能量范围:产生真空紫外(VUV)光(115 ~ 180 nm)的微波放电氢流灯(MDHL)和模拟200 ~ 1800 nm太阳宽带辐射的太阳辐射氙弧灯(SRL)。辐照后,使用傅里叶变换红外(FTIR)光谱仪在中红外范围(4000 ~ 700 cm−1或2.5 ~ 14.3 μm)鉴定固态光产物。用四极杆质谱仪(QMS)跟踪升华气相物质。在70 K时,来自MDHL的高能光子在H2O:CO2:NH3冰基质中由于CO2在高温下的聚类而形成了新的物质,如O3和CO3。因此,分离CO2的解离通过o原子的增强迁移性和加成反应提供了生成O3所需的氧原子。在15 K时,紫外光子诱导出CO、OCN−、H2CO、CH3OH、HCOOH,可能还有NH2OH。同样,这些物种在70 K下被检测到,并初步分配为HCOOH和NH2OH。由于光子能量不足,SRL没有引起冰的化学演化。总之,我们预测臭氧的形成是通过制造富含二氧化碳或混合二氧化碳:水的冰来实现的,例如,在土卫二的虎纹之间或太阳系其他表面温度低于88 K的冰体上发现的冰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The photochemistry of irradiated Enceladus ice analogues: Implications for the formation of ozone and carbon trioxide
Detailed observations of Enceladus by the Cassini spacecraft revealed its astrobiological potential and transformed our perception of ocean worlds in the Solar System. Beneath Enceladus’ icy crust lies a warm ocean sustained by tidal heating. This ocean expels subsurface material through fissures at the south pole region into space as plumes. The particles in these plumes reaccrete on Enceladus’ surface, while some of the volatiles present in the sub-surface ocean diffuse through the ice shell to reach the surface. In this study, we irradiated thin Enceladus ice analogues in an ultra-high vacuum chamber optimised for ice chemistry at a surface temperature of 70 ± 2 K and compared the resulting composition with ices typical to the ISM (15 K). We studied the irradiation of ices composed of H2O, CO2, and NH3 mixtures as a function of wavelength by using two different radiation sources that cover high and low photon energy ranges: The microwave-discharge hydrogen-flow lamp (MDHL) generating vacuum-ultraviolet (VUV) light, that is, between 115 - 180 nm, and the solar radiation Xe-arc lamp (SRL), simulating the solar broadband radiation from 200 nm - 1800 nm. Upon irradiation, solid-state photoproducts were identified using a Fourier-transform infrared (FTIR) spectrometer in the mid-infrared range (4000 - 700 cm1 or 2.5 - 14.3 μm). Sublimating gas-phase species were tracked using a quadrupole mass spectrometer (QMS). At 70 K, energetic photons from the MDHL formed new species such as O3 and CO3 in an H2O:CO2:NH3 ice matrix due to the clustering of CO2 at elevated temperatures. Hereby, dissociation of segregated CO2 provides the necessary oxygen atoms to form O3 via the enhanced mobility and addition reaction of O-atoms. At 15 K, CO,OCN,H2CO,CH3OH, HCOOH and possibly NH2OH were induced by VUV-photons. Similarly, these species were detected at 70 K with a tentative assignment for HCOOH and NH2OH. The SRL caused no chemical evolution of the ice due to insufficient photon energies. In conclusion, we predict the formation of ozone by gardening of CO2-rich or mixed CO2:H2O ice, found, for example, in-between the tiger stripes on Enceladus or on other icy bodies in our Solar System with surface temperatures cooler than 88 K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信