Avital Ella Ben-Haim , Reut Amar Feldbaum , Uri Perry , Antolin Jesila Jesu Amalraj , Karthik Ananth Mani , Einat Zelinger , Einat Native-Roth , Mohamed Samara , Aviv Dombrovsky , Guy Mechrez
{"title":"刺激反应性高岭土胶体体在植物保护中抗病毒药物的主动递送","authors":"Avital Ella Ben-Haim , Reut Amar Feldbaum , Uri Perry , Antolin Jesila Jesu Amalraj , Karthik Ananth Mani , Einat Zelinger , Einat Native-Roth , Mohamed Samara , Aviv Dombrovsky , Guy Mechrez","doi":"10.1016/j.nantod.2025.102904","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel root protection method against Tobamovirus, using thermally responsive water-in-oil colloidosomes stabilized by halloysite nanotubes (HNTs). These colloidosomes are formed <em>in situ</em> through a cost-effective process using HNTs, canola oil, water, and two trietoxysilanes: (3-aminopropyl)trietoxysilanes (APTES) and Dodecyltriethoxysilane (DTES). The combination of hydrophilic APTES and hydrophobic DTES allows precise control over emulsion type and enables the formation of stable colloidosomes. A key feature of this system is the solar-triggered release of chlorinated trisodium phosphate (Cl-TSP), an antiviral agent that disinfects the root area and inactivates viral particles. The amount and timing of Cl-TSP release were measured, demonstrating controlled and localized delivery. The formulation provided high protection in tomato plants, while remaining biofriendly and environmentally safe. This work offers a smart-release platform for effective and sustainable crop protection.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"66 ","pages":"Article 102904"},"PeriodicalIF":10.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimuli-responsive halloysite colloidosomes for active delivery of antiviral agents in plant protection\",\"authors\":\"Avital Ella Ben-Haim , Reut Amar Feldbaum , Uri Perry , Antolin Jesila Jesu Amalraj , Karthik Ananth Mani , Einat Zelinger , Einat Native-Roth , Mohamed Samara , Aviv Dombrovsky , Guy Mechrez\",\"doi\":\"10.1016/j.nantod.2025.102904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a novel root protection method against Tobamovirus, using thermally responsive water-in-oil colloidosomes stabilized by halloysite nanotubes (HNTs). These colloidosomes are formed <em>in situ</em> through a cost-effective process using HNTs, canola oil, water, and two trietoxysilanes: (3-aminopropyl)trietoxysilanes (APTES) and Dodecyltriethoxysilane (DTES). The combination of hydrophilic APTES and hydrophobic DTES allows precise control over emulsion type and enables the formation of stable colloidosomes. A key feature of this system is the solar-triggered release of chlorinated trisodium phosphate (Cl-TSP), an antiviral agent that disinfects the root area and inactivates viral particles. The amount and timing of Cl-TSP release were measured, demonstrating controlled and localized delivery. The formulation provided high protection in tomato plants, while remaining biofriendly and environmentally safe. This work offers a smart-release platform for effective and sustainable crop protection.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"66 \",\"pages\":\"Article 102904\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013225002762\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stimuli-responsive halloysite colloidosomes for active delivery of antiviral agents in plant protection
This study introduces a novel root protection method against Tobamovirus, using thermally responsive water-in-oil colloidosomes stabilized by halloysite nanotubes (HNTs). These colloidosomes are formed in situ through a cost-effective process using HNTs, canola oil, water, and two trietoxysilanes: (3-aminopropyl)trietoxysilanes (APTES) and Dodecyltriethoxysilane (DTES). The combination of hydrophilic APTES and hydrophobic DTES allows precise control over emulsion type and enables the formation of stable colloidosomes. A key feature of this system is the solar-triggered release of chlorinated trisodium phosphate (Cl-TSP), an antiviral agent that disinfects the root area and inactivates viral particles. The amount and timing of Cl-TSP release were measured, demonstrating controlled and localized delivery. The formulation provided high protection in tomato plants, while remaining biofriendly and environmentally safe. This work offers a smart-release platform for effective and sustainable crop protection.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.