霍曼轴对称后滞点流动的扩展:非定常MHD和多孔表面上的传热

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ioan Pop , Minming Xu , Yun Ouyang
{"title":"霍曼轴对称后滞点流动的扩展:非定常MHD和多孔表面上的传热","authors":"Ioan Pop ,&nbsp;Minming Xu ,&nbsp;Yun Ouyang","doi":"10.1016/j.cjph.2025.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>This study extends Homann’s axisymmetric rear stagnation-point model by incorporating unsteady magnetohydrodynamic (MHD) effects and porous boundary influence, motivated by applications in electromagnetic cooling, porous material processing, and advanced thermal management. A new similarity transformation reduces the governing equations to nonlinear boundary value problems, which are solved using a hybrid symbolic–numerical method with MATLAB’s bvp4c. Results reveal dual solutions for <span><math><mrow><mi>λ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>; increasing the magnetic parameter <span><math><mi>M</mi></math></span> enhances surface shear but reduces heat transfer, while negative unsteadiness increases skin friction and suppresses the Nusselt number. Boundary layer separation accelerates with rising <span><math><mi>M</mi></math></span> and <span><math><mi>κ</mi></math></span>, and only the primary solution is stable. The proposed framework combines analytical reduction, numerical integration, and a new similarity formulation, offering improved predictive capability for controlling heat transfer and flow behavior in electromagnetic cooling systems and porous media devices.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"98 ","pages":"Pages 242-253"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of Homann’s axisymmetric rear stagnation-point flow: Unsteady MHD and heat transfer over a porous surface\",\"authors\":\"Ioan Pop ,&nbsp;Minming Xu ,&nbsp;Yun Ouyang\",\"doi\":\"10.1016/j.cjph.2025.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study extends Homann’s axisymmetric rear stagnation-point model by incorporating unsteady magnetohydrodynamic (MHD) effects and porous boundary influence, motivated by applications in electromagnetic cooling, porous material processing, and advanced thermal management. A new similarity transformation reduces the governing equations to nonlinear boundary value problems, which are solved using a hybrid symbolic–numerical method with MATLAB’s bvp4c. Results reveal dual solutions for <span><math><mrow><mi>λ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>; increasing the magnetic parameter <span><math><mi>M</mi></math></span> enhances surface shear but reduces heat transfer, while negative unsteadiness increases skin friction and suppresses the Nusselt number. Boundary layer separation accelerates with rising <span><math><mi>M</mi></math></span> and <span><math><mi>κ</mi></math></span>, and only the primary solution is stable. The proposed framework combines analytical reduction, numerical integration, and a new similarity formulation, offering improved predictive capability for controlling heat transfer and flow behavior in electromagnetic cooling systems and porous media devices.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"98 \",\"pages\":\"Pages 242-253\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325003569\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325003569","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究扩展了Homann的轴对称后滞点模型,将非定常磁流体动力学(MHD)效应和多孔边界影响纳入其中,并在电磁冷却、多孔材料加工和先进热管理领域得到应用。采用一种新的相似变换方法,将控制方程简化为非线性边值问题,并利用MATLAB的bvp4c算法,采用符号-数值混合方法对控制方程进行求解。结果表明λ<0;增大磁参数M增大了表面剪切,但减小了传热,而负非定常增大了表面摩擦,抑制了努塞尔数。边界层分离随M和κ的增大而加速,且只有初解稳定。提出的框架结合了解析化简、数值积分和新的相似公式,为控制电磁冷却系统和多孔介质装置的传热和流动行为提供了改进的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of Homann’s axisymmetric rear stagnation-point flow: Unsteady MHD and heat transfer over a porous surface
This study extends Homann’s axisymmetric rear stagnation-point model by incorporating unsteady magnetohydrodynamic (MHD) effects and porous boundary influence, motivated by applications in electromagnetic cooling, porous material processing, and advanced thermal management. A new similarity transformation reduces the governing equations to nonlinear boundary value problems, which are solved using a hybrid symbolic–numerical method with MATLAB’s bvp4c. Results reveal dual solutions for λ<0; increasing the magnetic parameter M enhances surface shear but reduces heat transfer, while negative unsteadiness increases skin friction and suppresses the Nusselt number. Boundary layer separation accelerates with rising M and κ, and only the primary solution is stable. The proposed framework combines analytical reduction, numerical integration, and a new similarity formulation, offering improved predictive capability for controlling heat transfer and flow behavior in electromagnetic cooling systems and porous media devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信