Louisa Pawusch , Stefania Scheurer , Wolfgang Nowak , Reed M. Maxwell
{"title":"HydroStartML:结合机器学习和基于物理的方法,减少水文模型启动时间","authors":"Louisa Pawusch , Stefania Scheurer , Wolfgang Nowak , Reed M. Maxwell","doi":"10.1016/j.advwatres.2025.105124","DOIUrl":null,"url":null,"abstract":"<div><div>Finding the initial depth-to-water table (DTWT) configuration of a catchment is a critical challenge when simulating the hydrological cycle with integrated models, significantly impacting simulation outcomes. Traditionally, this involves iterative spin-up computations, where the model runs under constant atmospheric settings until steady-state is achieved. These so-called model spin-ups are computationally expensive, often requiring many years of simulated time, particularly when the initial DTWT configuration is far from steady state.</div><div>To accelerate the model spin-up process we developed <em>HydroStartML</em>, a machine learning emulator trained on steady-state DTWT configurations across the contiguous United States. <em>HydroStartML</em> predicts, based on available data like conductivity and surface slopes, a DTWT configuration of the respective watershed, which can be used as an initial DTWT.</div><div>Our results show that initializing spin-up computations with <em>HydroStartML</em> predictions leads to faster convergence than with other initial configurations like spatially constant DTWTs. The emulator accurately predicts configurations close to steady state, even for terrain configurations not seen in training, and allows especially significant reductions in computational spin-up effort in regions with deep DTWTs. This work opens the door for hybrid approaches that blend machine learning and traditional simulation, enhancing predictive accuracy and efficiency in hydrology for improving water resource management and understanding complex environmental interactions.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"206 ","pages":"Article 105124"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HydroStartML: A combined machine learning and physics-based approach to reduce hydrological model spin-up time\",\"authors\":\"Louisa Pawusch , Stefania Scheurer , Wolfgang Nowak , Reed M. Maxwell\",\"doi\":\"10.1016/j.advwatres.2025.105124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Finding the initial depth-to-water table (DTWT) configuration of a catchment is a critical challenge when simulating the hydrological cycle with integrated models, significantly impacting simulation outcomes. Traditionally, this involves iterative spin-up computations, where the model runs under constant atmospheric settings until steady-state is achieved. These so-called model spin-ups are computationally expensive, often requiring many years of simulated time, particularly when the initial DTWT configuration is far from steady state.</div><div>To accelerate the model spin-up process we developed <em>HydroStartML</em>, a machine learning emulator trained on steady-state DTWT configurations across the contiguous United States. <em>HydroStartML</em> predicts, based on available data like conductivity and surface slopes, a DTWT configuration of the respective watershed, which can be used as an initial DTWT.</div><div>Our results show that initializing spin-up computations with <em>HydroStartML</em> predictions leads to faster convergence than with other initial configurations like spatially constant DTWTs. The emulator accurately predicts configurations close to steady state, even for terrain configurations not seen in training, and allows especially significant reductions in computational spin-up effort in regions with deep DTWTs. This work opens the door for hybrid approaches that blend machine learning and traditional simulation, enhancing predictive accuracy and efficiency in hydrology for improving water resource management and understanding complex environmental interactions.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"206 \",\"pages\":\"Article 105124\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170825002386\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825002386","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
HydroStartML: A combined machine learning and physics-based approach to reduce hydrological model spin-up time
Finding the initial depth-to-water table (DTWT) configuration of a catchment is a critical challenge when simulating the hydrological cycle with integrated models, significantly impacting simulation outcomes. Traditionally, this involves iterative spin-up computations, where the model runs under constant atmospheric settings until steady-state is achieved. These so-called model spin-ups are computationally expensive, often requiring many years of simulated time, particularly when the initial DTWT configuration is far from steady state.
To accelerate the model spin-up process we developed HydroStartML, a machine learning emulator trained on steady-state DTWT configurations across the contiguous United States. HydroStartML predicts, based on available data like conductivity and surface slopes, a DTWT configuration of the respective watershed, which can be used as an initial DTWT.
Our results show that initializing spin-up computations with HydroStartML predictions leads to faster convergence than with other initial configurations like spatially constant DTWTs. The emulator accurately predicts configurations close to steady state, even for terrain configurations not seen in training, and allows especially significant reductions in computational spin-up effort in regions with deep DTWTs. This work opens the door for hybrid approaches that blend machine learning and traditional simulation, enhancing predictive accuracy and efficiency in hydrology for improving water resource management and understanding complex environmental interactions.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes