增强基于物联网异常检测的联邦学习:基于声誉的客户端选择方法

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Maha Jawad Alfadhil , Ali Baydoun , Moutaz Alazab , Hafeez Ur Rehman , Jihad Al Jaam , Sumaya Ali S.A. Al-Maadeed
{"title":"增强基于物联网异常检测的联邦学习:基于声誉的客户端选择方法","authors":"Maha Jawad Alfadhil ,&nbsp;Ali Baydoun ,&nbsp;Moutaz Alazab ,&nbsp;Hafeez Ur Rehman ,&nbsp;Jihad Al Jaam ,&nbsp;Sumaya Ali S.A. Al-Maadeed","doi":"10.1016/j.aej.2025.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) enables collaborative model training across decentralized, privacy-sensitive environments but often suffers from slow convergence, unbalanced client selection, and non‑IID data challenges. We propose a Reputation‑Based Client Selection Mechanism with proportional fairness, computing each client’s reputation from accuracy, consistency, network conditions, data quality, and historical reliability. By adaptively prioritizing high‑contributing clients while ensuring equitable participation, our method accelerates convergence and balances contributions. Evaluations on the UNSW‑NB15 intrusion detection dataset under IID and non‑IID settings demonstrate that our approach significantly reduces the number of communication rounds needed to reach stable accuracy compared to FedAvg and FedProx, while enhancing model generalization and robustness. This scalable strategy advances FL for efficient, inclusive learning in IoT and cybersecurity.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"130 ","pages":"Pages 889-909"},"PeriodicalIF":6.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing federated learning for IoT-based anomaly detection: A reputation-based client selection approach\",\"authors\":\"Maha Jawad Alfadhil ,&nbsp;Ali Baydoun ,&nbsp;Moutaz Alazab ,&nbsp;Hafeez Ur Rehman ,&nbsp;Jihad Al Jaam ,&nbsp;Sumaya Ali S.A. Al-Maadeed\",\"doi\":\"10.1016/j.aej.2025.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Federated Learning (FL) enables collaborative model training across decentralized, privacy-sensitive environments but often suffers from slow convergence, unbalanced client selection, and non‑IID data challenges. We propose a Reputation‑Based Client Selection Mechanism with proportional fairness, computing each client’s reputation from accuracy, consistency, network conditions, data quality, and historical reliability. By adaptively prioritizing high‑contributing clients while ensuring equitable participation, our method accelerates convergence and balances contributions. Evaluations on the UNSW‑NB15 intrusion detection dataset under IID and non‑IID settings demonstrate that our approach significantly reduces the number of communication rounds needed to reach stable accuracy compared to FedAvg and FedProx, while enhancing model generalization and robustness. This scalable strategy advances FL for efficient, inclusive learning in IoT and cybersecurity.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"130 \",\"pages\":\"Pages 889-909\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825009810\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825009810","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)能够在分散的、隐私敏感的环境中进行协作模型训练,但通常会遇到收敛缓慢、客户端选择不平衡以及非IID数据挑战等问题。我们提出了一种基于信誉的比例公平客户端选择机制,从准确性、一致性、网络条件、数据质量和历史可靠性计算每个客户端的信誉。通过在确保公平参与的同时自适应地优先考虑高贡献客户,我们的方法加速了趋同并平衡了贡献。在IID和非IID设置下对UNSW‑NB15入侵检测数据集的评估表明,与fedag和FedProx相比,我们的方法显著减少了达到稳定精度所需的通信轮数,同时增强了模型的泛化和鲁棒性。这种可扩展的策略促进了FL在物联网和网络安全领域的高效、包容性学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing federated learning for IoT-based anomaly detection: A reputation-based client selection approach
Federated Learning (FL) enables collaborative model training across decentralized, privacy-sensitive environments but often suffers from slow convergence, unbalanced client selection, and non‑IID data challenges. We propose a Reputation‑Based Client Selection Mechanism with proportional fairness, computing each client’s reputation from accuracy, consistency, network conditions, data quality, and historical reliability. By adaptively prioritizing high‑contributing clients while ensuring equitable participation, our method accelerates convergence and balances contributions. Evaluations on the UNSW‑NB15 intrusion detection dataset under IID and non‑IID settings demonstrate that our approach significantly reduces the number of communication rounds needed to reach stable accuracy compared to FedAvg and FedProx, while enhancing model generalization and robustness. This scalable strategy advances FL for efficient, inclusive learning in IoT and cybersecurity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信