构造高阶晶格玻尔兹曼法的体源

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shunyang Li , Li Wan , Nan Gui , Xingtuan Yang , Jiyuan Tu , Shengyao Jiang
{"title":"构造高阶晶格玻尔兹曼法的体源","authors":"Shunyang Li ,&nbsp;Li Wan ,&nbsp;Nan Gui ,&nbsp;Xingtuan Yang ,&nbsp;Jiyuan Tu ,&nbsp;Shengyao Jiang","doi":"10.1016/j.compfluid.2025.106851","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel strategy for constructing body source terms in the high-order lattice Boltzmann method (LBM), designed to efficiently introduce various physical phenomena by modifying the non-equilibrium distribution function. The source term, expressed as a Hermite polynomial, provides a flexible framework for simulating complex fluid flows. Three typical source terms are given: a body force source for gravity-driven flows, a thermal dissipation source for controlling the Prandtl number, and a pressure tensor source for modeling multiphase flows. Chapman-Enskog analysis confirms that the source terms recover the expected macroscopic equations. Notably, the proposed strategy eliminates the need for explicit construction of the collision operator, a challenge in conventional approaches for handling diverse physical scenarios. Furthermore, the method is compatible with the traditional BGK model, ensuring its applicability to various high-order lattices. The model’s accuracy and versatility are validated through a series of benchmark tests, showing excellent agreement with existing literature results.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106851"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing the body source for high-order lattice Boltzmann method\",\"authors\":\"Shunyang Li ,&nbsp;Li Wan ,&nbsp;Nan Gui ,&nbsp;Xingtuan Yang ,&nbsp;Jiyuan Tu ,&nbsp;Shengyao Jiang\",\"doi\":\"10.1016/j.compfluid.2025.106851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel strategy for constructing body source terms in the high-order lattice Boltzmann method (LBM), designed to efficiently introduce various physical phenomena by modifying the non-equilibrium distribution function. The source term, expressed as a Hermite polynomial, provides a flexible framework for simulating complex fluid flows. Three typical source terms are given: a body force source for gravity-driven flows, a thermal dissipation source for controlling the Prandtl number, and a pressure tensor source for modeling multiphase flows. Chapman-Enskog analysis confirms that the source terms recover the expected macroscopic equations. Notably, the proposed strategy eliminates the need for explicit construction of the collision operator, a challenge in conventional approaches for handling diverse physical scenarios. Furthermore, the method is compatible with the traditional BGK model, ensuring its applicability to various high-order lattices. The model’s accuracy and versatility are validated through a series of benchmark tests, showing excellent agreement with existing literature results.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"302 \",\"pages\":\"Article 106851\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025003111\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025003111","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种在高阶晶格玻尔兹曼方法(LBM)中构造体源项的新策略,旨在通过修改非平衡分布函数来有效地引入各种物理现象。源项以埃尔米特多项式表示,为模拟复杂流体流动提供了一个灵活的框架。给出了三种典型的源项:用于重力驱动流的体力源、用于控制普朗特数的热耗散源和用于模拟多相流的压力张量源。查普曼-恩斯科格分析证实源项恢复了预期的宏观方程。值得注意的是,该策略消除了明确构建碰撞算子的需要,而碰撞算子是处理不同物理场景的传统方法所面临的挑战。此外,该方法与传统的BGK模型兼容,保证了其对各种高阶格的适用性。通过一系列基准测试验证了该模型的准确性和通用性,与已有文献结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing the body source for high-order lattice Boltzmann method
This paper presents a novel strategy for constructing body source terms in the high-order lattice Boltzmann method (LBM), designed to efficiently introduce various physical phenomena by modifying the non-equilibrium distribution function. The source term, expressed as a Hermite polynomial, provides a flexible framework for simulating complex fluid flows. Three typical source terms are given: a body force source for gravity-driven flows, a thermal dissipation source for controlling the Prandtl number, and a pressure tensor source for modeling multiphase flows. Chapman-Enskog analysis confirms that the source terms recover the expected macroscopic equations. Notably, the proposed strategy eliminates the need for explicit construction of the collision operator, a challenge in conventional approaches for handling diverse physical scenarios. Furthermore, the method is compatible with the traditional BGK model, ensuring its applicability to various high-order lattices. The model’s accuracy and versatility are validated through a series of benchmark tests, showing excellent agreement with existing literature results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信