Xiaoming Mou , Yuqiang Li , Xuyang Wang , Han Mao , Bin Jia , Fencan Li , Jie Chen , Yun Chen , Yingwen Yu , Yakov Kuzyakov
{"title":"涝渍增加了高寒草甸土壤微生物坏死体碳和颗粒有机碳","authors":"Xiaoming Mou , Yuqiang Li , Xuyang Wang , Han Mao , Bin Jia , Fencan Li , Jie Chen , Yun Chen , Yingwen Yu , Yakov Kuzyakov","doi":"10.1016/j.catena.2025.109493","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrological changes induced by climate warming and human activities significantly impact soil organic carbon (SOC) accumulation in grasslands. Microbial necromass carbon (MNC) and particulate organic carbon (POC) plays a pivotal role in forming stable and labile SOC reservoirs. However, the accumulation of MNC and POC, their contribution to SOC, and the mechanisms governing these processes along the alpine grassland-wetland continuum remain unclear. We investigated the effects of a hydrological gradient on MNC and POC accumulation and their contributions to SOC, as well as the underlying mechanisms in topsoil and subsoils on the Tibetan Plateau. Fens had 320% and 280% higher SOC sequestration efficiency in the topsoil than mesic and wet meadows, respectively. Waterlogging increased the total MNC, fungal necromass carbon (FNC), and bacterial necromass carbon (BNC) content in both topsoil and subsoil, while the MNC proportion in SOC remained stable at an average of 32% along the alpine grassland-wetland continuum. Additionally, waterlogging also increased POC content, with a higher proportion of POC in SOC observed in anaerobic fens compared to mesic meadows. Lower FNC/BNC ratios and a higher POC proportion in SOC indicate reduced SOC stability in waterlogged fens. Correlation analysis and structural equation modelling showed that microbial biomass and pH were key determinants of MNC in the topsoil, while microbial biomass, iron and aluminum oxides primarily determined MNC in the subsoil. We conclude that waterlogging increases total MNC and POC content in soil. While the MNC contribution to SOC remains stable, the POC contribution to SOC increases significantly. Thus, SOC in fens exhibits reduced stability, forewarning of potential C loss risks associated with the decline of wetland areas in alpine meadows.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"260 ","pages":"Article 109493"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waterlogging increases microbial necromass carbon and particulate organic carbon in alpine meadow soils\",\"authors\":\"Xiaoming Mou , Yuqiang Li , Xuyang Wang , Han Mao , Bin Jia , Fencan Li , Jie Chen , Yun Chen , Yingwen Yu , Yakov Kuzyakov\",\"doi\":\"10.1016/j.catena.2025.109493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrological changes induced by climate warming and human activities significantly impact soil organic carbon (SOC) accumulation in grasslands. Microbial necromass carbon (MNC) and particulate organic carbon (POC) plays a pivotal role in forming stable and labile SOC reservoirs. However, the accumulation of MNC and POC, their contribution to SOC, and the mechanisms governing these processes along the alpine grassland-wetland continuum remain unclear. We investigated the effects of a hydrological gradient on MNC and POC accumulation and their contributions to SOC, as well as the underlying mechanisms in topsoil and subsoils on the Tibetan Plateau. Fens had 320% and 280% higher SOC sequestration efficiency in the topsoil than mesic and wet meadows, respectively. Waterlogging increased the total MNC, fungal necromass carbon (FNC), and bacterial necromass carbon (BNC) content in both topsoil and subsoil, while the MNC proportion in SOC remained stable at an average of 32% along the alpine grassland-wetland continuum. Additionally, waterlogging also increased POC content, with a higher proportion of POC in SOC observed in anaerobic fens compared to mesic meadows. Lower FNC/BNC ratios and a higher POC proportion in SOC indicate reduced SOC stability in waterlogged fens. Correlation analysis and structural equation modelling showed that microbial biomass and pH were key determinants of MNC in the topsoil, while microbial biomass, iron and aluminum oxides primarily determined MNC in the subsoil. We conclude that waterlogging increases total MNC and POC content in soil. While the MNC contribution to SOC remains stable, the POC contribution to SOC increases significantly. Thus, SOC in fens exhibits reduced stability, forewarning of potential C loss risks associated with the decline of wetland areas in alpine meadows.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":\"260 \",\"pages\":\"Article 109493\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816225007957\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816225007957","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Waterlogging increases microbial necromass carbon and particulate organic carbon in alpine meadow soils
Hydrological changes induced by climate warming and human activities significantly impact soil organic carbon (SOC) accumulation in grasslands. Microbial necromass carbon (MNC) and particulate organic carbon (POC) plays a pivotal role in forming stable and labile SOC reservoirs. However, the accumulation of MNC and POC, their contribution to SOC, and the mechanisms governing these processes along the alpine grassland-wetland continuum remain unclear. We investigated the effects of a hydrological gradient on MNC and POC accumulation and their contributions to SOC, as well as the underlying mechanisms in topsoil and subsoils on the Tibetan Plateau. Fens had 320% and 280% higher SOC sequestration efficiency in the topsoil than mesic and wet meadows, respectively. Waterlogging increased the total MNC, fungal necromass carbon (FNC), and bacterial necromass carbon (BNC) content in both topsoil and subsoil, while the MNC proportion in SOC remained stable at an average of 32% along the alpine grassland-wetland continuum. Additionally, waterlogging also increased POC content, with a higher proportion of POC in SOC observed in anaerobic fens compared to mesic meadows. Lower FNC/BNC ratios and a higher POC proportion in SOC indicate reduced SOC stability in waterlogged fens. Correlation analysis and structural equation modelling showed that microbial biomass and pH were key determinants of MNC in the topsoil, while microbial biomass, iron and aluminum oxides primarily determined MNC in the subsoil. We conclude that waterlogging increases total MNC and POC content in soil. While the MNC contribution to SOC remains stable, the POC contribution to SOC increases significantly. Thus, SOC in fens exhibits reduced stability, forewarning of potential C loss risks associated with the decline of wetland areas in alpine meadows.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.