Ramaraj Sukanya , Raj Karthik , Abdullah Al Mahmud , Eithne Dempsey , Deivasigamani Ranjith Kumar , Carmel B. Breslin , Jae-Jin Shim
{"title":"铌掺杂MoSe2和NiTe异质结构的协同界面实现了高效的析氢电催化","authors":"Ramaraj Sukanya , Raj Karthik , Abdullah Al Mahmud , Eithne Dempsey , Deivasigamani Ranjith Kumar , Carmel B. Breslin , Jae-Jin Shim","doi":"10.1016/j.elecom.2025.108061","DOIUrl":null,"url":null,"abstract":"<div><div>To support clean hydrogen energy, we present a niobium-doped molybdenum diselenide integrated with nickel telluride (Nb-MoSe<sub>2</sub>–NiTe) heterostructure as an efficient electrocatalyst for the hydrogen evolution reaction (HER) in acidic media. Nb-doping modulates the electronic structure of MoSe<sub>2</sub>, while NiTe contributes to enhanced conductivity and introduces additional active interfacial sites. Structural and surface characterizations confirm successful doping and heterostructure formation. The optimized Nb-MoSe<sub>2</sub>–NiTe composition achieves a low overpotential of 395 mV at 50 mA/cm<sup>2</sup> and a Tafel slope of 242 mV/dec, along with a high ECSA of 377.5 cm<sup>2</sup>. These enhancements result from synergistic interactions that promote charge transfer and hydrogen adsorption. The Nb-MoSe<sub>2</sub>–NiTe offers a promising platform for cost-effective HER catalysis, demonstrating a rational strategy that integrates electronic and interfacial engineering for sustainable hydrogen production.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108061"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic interface of Nb-doped MoSe2 and NiTe heterostructure enables efficient electrocatalysis for hydrogen evolution\",\"authors\":\"Ramaraj Sukanya , Raj Karthik , Abdullah Al Mahmud , Eithne Dempsey , Deivasigamani Ranjith Kumar , Carmel B. Breslin , Jae-Jin Shim\",\"doi\":\"10.1016/j.elecom.2025.108061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To support clean hydrogen energy, we present a niobium-doped molybdenum diselenide integrated with nickel telluride (Nb-MoSe<sub>2</sub>–NiTe) heterostructure as an efficient electrocatalyst for the hydrogen evolution reaction (HER) in acidic media. Nb-doping modulates the electronic structure of MoSe<sub>2</sub>, while NiTe contributes to enhanced conductivity and introduces additional active interfacial sites. Structural and surface characterizations confirm successful doping and heterostructure formation. The optimized Nb-MoSe<sub>2</sub>–NiTe composition achieves a low overpotential of 395 mV at 50 mA/cm<sup>2</sup> and a Tafel slope of 242 mV/dec, along with a high ECSA of 377.5 cm<sup>2</sup>. These enhancements result from synergistic interactions that promote charge transfer and hydrogen adsorption. The Nb-MoSe<sub>2</sub>–NiTe offers a promising platform for cost-effective HER catalysis, demonstrating a rational strategy that integrates electronic and interfacial engineering for sustainable hydrogen production.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"180 \",\"pages\":\"Article 108061\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125002012\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125002012","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Synergistic interface of Nb-doped MoSe2 and NiTe heterostructure enables efficient electrocatalysis for hydrogen evolution
To support clean hydrogen energy, we present a niobium-doped molybdenum diselenide integrated with nickel telluride (Nb-MoSe2–NiTe) heterostructure as an efficient electrocatalyst for the hydrogen evolution reaction (HER) in acidic media. Nb-doping modulates the electronic structure of MoSe2, while NiTe contributes to enhanced conductivity and introduces additional active interfacial sites. Structural and surface characterizations confirm successful doping and heterostructure formation. The optimized Nb-MoSe2–NiTe composition achieves a low overpotential of 395 mV at 50 mA/cm2 and a Tafel slope of 242 mV/dec, along with a high ECSA of 377.5 cm2. These enhancements result from synergistic interactions that promote charge transfer and hydrogen adsorption. The Nb-MoSe2–NiTe offers a promising platform for cost-effective HER catalysis, demonstrating a rational strategy that integrates electronic and interfacial engineering for sustainable hydrogen production.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.