通过热电晕放电实现高导电性带电氧化物反转层

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Jingyan Chen , Tarek O. Abdul Fattah , Anastasia Soeriyadi , Matthew Wright , Edris Khorani , Peter R. Wilshaw , John D. Murphy , Ruy S. Bonilla
{"title":"通过热电晕放电实现高导电性带电氧化物反转层","authors":"Jingyan Chen ,&nbsp;Tarek O. Abdul Fattah ,&nbsp;Anastasia Soeriyadi ,&nbsp;Matthew Wright ,&nbsp;Edris Khorani ,&nbsp;Peter R. Wilshaw ,&nbsp;John D. Murphy ,&nbsp;Ruy S. Bonilla","doi":"10.1016/j.solmat.2025.113930","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon solar cell manufacturing is dominated by cell architectures that rely on a high-temperature energy-intensive diffusion process to introduce dopants. Such doped layers lead to substantial Auger recombination losses. Charged oxide inversion layer (COIL) solar cells eliminate the need for high-temperature diffusion and highly doped surface layers by incorporating charge in a surface dielectric to form an inversion layer emitter beneath the semiconductor-dielectric interface. The success of the COIL design hinges on achieving a sufficiently high dielectric charge to produce highly conductive inversion-layer emitters. In this work, we develop a new “hot-corona discharge” technique to facilitate the charge drive-in via a process integrating corona charging and thermal annealing into a single step. We show the process is effective in creating an <em>n-</em>type inversion layer on <em>p</em>-type silicon wafers, yielding increases in carrier lifetime and reductions in emitter sheet resistance. The temperature (330–430 <sup>°</sup>C) and time (30–1020 s) dependence of this new hot-corona approach is studied, demonstrating careful control over charge density. By optimising the process against temperature and ion drive-in cycles, we achieve the highest positive charge concentration reported on a SiO<sub>2</sub>/Si interface of &gt;4.0 × 10<sup>13</sup> q/cm<sup>2</sup>. With the ability to incorporate such high charge density, a low sheet resistance and highly conductive inversion layer can be formed. This represents a significant step forward in the attempt to replace the diffused emitter technology with a low-temperature alternative, enabling high-efficiency inversion-layer solar cells with reduced thermal budget and intrinsic losses.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 113930"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling highly conductive charged oxide inversion layers through hot corona discharge\",\"authors\":\"Jingyan Chen ,&nbsp;Tarek O. Abdul Fattah ,&nbsp;Anastasia Soeriyadi ,&nbsp;Matthew Wright ,&nbsp;Edris Khorani ,&nbsp;Peter R. Wilshaw ,&nbsp;John D. Murphy ,&nbsp;Ruy S. Bonilla\",\"doi\":\"10.1016/j.solmat.2025.113930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon solar cell manufacturing is dominated by cell architectures that rely on a high-temperature energy-intensive diffusion process to introduce dopants. Such doped layers lead to substantial Auger recombination losses. Charged oxide inversion layer (COIL) solar cells eliminate the need for high-temperature diffusion and highly doped surface layers by incorporating charge in a surface dielectric to form an inversion layer emitter beneath the semiconductor-dielectric interface. The success of the COIL design hinges on achieving a sufficiently high dielectric charge to produce highly conductive inversion-layer emitters. In this work, we develop a new “hot-corona discharge” technique to facilitate the charge drive-in via a process integrating corona charging and thermal annealing into a single step. We show the process is effective in creating an <em>n-</em>type inversion layer on <em>p</em>-type silicon wafers, yielding increases in carrier lifetime and reductions in emitter sheet resistance. The temperature (330–430 <sup>°</sup>C) and time (30–1020 s) dependence of this new hot-corona approach is studied, demonstrating careful control over charge density. By optimising the process against temperature and ion drive-in cycles, we achieve the highest positive charge concentration reported on a SiO<sub>2</sub>/Si interface of &gt;4.0 × 10<sup>13</sup> q/cm<sup>2</sup>. With the ability to incorporate such high charge density, a low sheet resistance and highly conductive inversion layer can be formed. This represents a significant step forward in the attempt to replace the diffused emitter technology with a low-temperature alternative, enabling high-efficiency inversion-layer solar cells with reduced thermal budget and intrinsic losses.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"295 \",\"pages\":\"Article 113930\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825005318\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005318","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

硅太阳能电池制造主要依赖于高温能量密集型扩散过程来引入掺杂剂的电池结构。这种掺杂层导致大量的俄歇复合损失。带电氧化物反转层(COIL)太阳能电池通过在表面电介质中结合电荷,在半导体-电介质界面下方形成反转层发射器,从而消除了对高温扩散和高掺杂表面层的需要。COIL设计的成功取决于获得足够高的介电电荷来产生高导电性的反转层发射器。在这项工作中,我们开发了一种新的“热电晕放电”技术,通过将电晕充电和热退火集成为一个步骤来促进电荷的注入。我们证明了该工艺在p型硅片上有效地创建了n型反转层,从而增加了载流子寿命并降低了发射极片电阻。研究了这种新的热电晕方法对温度(330-430℃)和时间(30-1020 s)的依赖关系,证明了对电荷密度的仔细控制。通过对温度和离子注入循环进行优化,我们在SiO2/Si界面上获得了最高的正电荷浓度,为4.0 × 1013 q/cm2。由于能够结合如此高的电荷密度,可以形成低片电阻和高导电性的反转层。这代表了用低温替代扩散发射器技术的重要一步,使高效的逆温层太阳能电池具有更低的热收支和固有损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling highly conductive charged oxide inversion layers through hot corona discharge
Silicon solar cell manufacturing is dominated by cell architectures that rely on a high-temperature energy-intensive diffusion process to introduce dopants. Such doped layers lead to substantial Auger recombination losses. Charged oxide inversion layer (COIL) solar cells eliminate the need for high-temperature diffusion and highly doped surface layers by incorporating charge in a surface dielectric to form an inversion layer emitter beneath the semiconductor-dielectric interface. The success of the COIL design hinges on achieving a sufficiently high dielectric charge to produce highly conductive inversion-layer emitters. In this work, we develop a new “hot-corona discharge” technique to facilitate the charge drive-in via a process integrating corona charging and thermal annealing into a single step. We show the process is effective in creating an n-type inversion layer on p-type silicon wafers, yielding increases in carrier lifetime and reductions in emitter sheet resistance. The temperature (330–430 °C) and time (30–1020 s) dependence of this new hot-corona approach is studied, demonstrating careful control over charge density. By optimising the process against temperature and ion drive-in cycles, we achieve the highest positive charge concentration reported on a SiO2/Si interface of >4.0 × 1013 q/cm2. With the ability to incorporate such high charge density, a low sheet resistance and highly conductive inversion layer can be formed. This represents a significant step forward in the attempt to replace the diffused emitter technology with a low-temperature alternative, enabling high-efficiency inversion-layer solar cells with reduced thermal budget and intrinsic losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信