基于避碰行为特征的船舶迎面驾驶风格聚类方法

IF 4.4 2区 工程技术 Q1 ENGINEERING, OCEAN
Moxuan Wei, Feixiang Zhu, Yifan Du, Yihan Niu, Tao Hu
{"title":"基于避碰行为特征的船舶迎面驾驶风格聚类方法","authors":"Moxuan Wei,&nbsp;Feixiang Zhu,&nbsp;Yifan Du,&nbsp;Yihan Niu,&nbsp;Tao Hu","doi":"10.1016/j.apor.2025.104786","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, there are limited researches on objective demonstration and mining methods concerning the existence of ship driving styles. This paper proposes a method for clustering ship driving styles in head-on situations using collision avoidance behaviour characteristics. Firstly, the head-on situations are screened based on relative motion parameters between ships. Secondly, the improved sliding window algorithm is employed to detect the collision avoidance decision-making moment, considering the ships’ manoeuvring performance and navigation inertia. Then, collision avoidance characteristic indicators are selected, which combine the four collision avoidance requirements of ”early, large, wide, clear” proposed by the International Regulations for Preventing Collisions at Sea (COLREGs). Finally, a combination of factor analysis and the K-means<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span> algorithms is utilized to effectively classify and characterize ship driving styles. Empirical findings derived from Automatic Identification System (AIS) data in the Laotieshan Waterway demonstrate that ships can be categorized into four distinct driving styles: Conservative Close-Distance Avoidance (CCDA), Delayed Low-Efficacy Avoidance (DLEA), Proactive Large-Amplitude Avoidance (PLAA) and Preventive Safe-Distance Avoidance (PSDA), which account for 50%, 26%, 15%, and 9% of the total, respectively. The proposed method provides a novel research perspective and certain practical application value in comprehending the micro-behavioural traits of ships and advancing the field of Maritime Autonomous Surface Ships (MASS).</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"164 ","pages":"Article 104786"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for clustering ship driving styles in head-on situations using collision avoidance behaviour characteristics\",\"authors\":\"Moxuan Wei,&nbsp;Feixiang Zhu,&nbsp;Yifan Du,&nbsp;Yihan Niu,&nbsp;Tao Hu\",\"doi\":\"10.1016/j.apor.2025.104786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Currently, there are limited researches on objective demonstration and mining methods concerning the existence of ship driving styles. This paper proposes a method for clustering ship driving styles in head-on situations using collision avoidance behaviour characteristics. Firstly, the head-on situations are screened based on relative motion parameters between ships. Secondly, the improved sliding window algorithm is employed to detect the collision avoidance decision-making moment, considering the ships’ manoeuvring performance and navigation inertia. Then, collision avoidance characteristic indicators are selected, which combine the four collision avoidance requirements of ”early, large, wide, clear” proposed by the International Regulations for Preventing Collisions at Sea (COLREGs). Finally, a combination of factor analysis and the K-means<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span> algorithms is utilized to effectively classify and characterize ship driving styles. Empirical findings derived from Automatic Identification System (AIS) data in the Laotieshan Waterway demonstrate that ships can be categorized into four distinct driving styles: Conservative Close-Distance Avoidance (CCDA), Delayed Low-Efficacy Avoidance (DLEA), Proactive Large-Amplitude Avoidance (PLAA) and Preventive Safe-Distance Avoidance (PSDA), which account for 50%, 26%, 15%, and 9% of the total, respectively. The proposed method provides a novel research perspective and certain practical application value in comprehending the micro-behavioural traits of ships and advancing the field of Maritime Autonomous Surface Ships (MASS).</div></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"164 \",\"pages\":\"Article 104786\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118725003724\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725003724","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

目前,关于船舶驾驶风格存在性的客观论证和挖掘方法研究有限。本文提出了一种基于避碰行为特征的船舶迎面驾驶风格聚类方法。首先,根据船舶之间的相对运动参数筛选正面情况;其次,考虑船舶的操纵性能和航行惯性,采用改进的滑动窗口算法检测避碰决策时刻;然后,结合《国际海上避碰规则》(COLREGs)提出的“早、大、宽、清”四种避碰要求,选择避碰特性指标。最后,结合因子分析和k -means++算法对船舶驾驶风格进行有效分类和表征。基于老铁山航道自动识别系统(AIS)数据的实证研究表明,船舶的驾驶方式可分为保守型近距离规避(CCDA)、延迟型低效率规避(DLEA)、主动型大幅度规避(PLAA)和预防性安全距离规避(PSDA)四种,分别占总量的50%、26%、15%和9%。该方法为理解船舶微观行为特征,推进海上自主水面舰艇领域的发展提供了新的研究视角和一定的实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for clustering ship driving styles in head-on situations using collision avoidance behaviour characteristics
Currently, there are limited researches on objective demonstration and mining methods concerning the existence of ship driving styles. This paper proposes a method for clustering ship driving styles in head-on situations using collision avoidance behaviour characteristics. Firstly, the head-on situations are screened based on relative motion parameters between ships. Secondly, the improved sliding window algorithm is employed to detect the collision avoidance decision-making moment, considering the ships’ manoeuvring performance and navigation inertia. Then, collision avoidance characteristic indicators are selected, which combine the four collision avoidance requirements of ”early, large, wide, clear” proposed by the International Regulations for Preventing Collisions at Sea (COLREGs). Finally, a combination of factor analysis and the K-means++ algorithms is utilized to effectively classify and characterize ship driving styles. Empirical findings derived from Automatic Identification System (AIS) data in the Laotieshan Waterway demonstrate that ships can be categorized into four distinct driving styles: Conservative Close-Distance Avoidance (CCDA), Delayed Low-Efficacy Avoidance (DLEA), Proactive Large-Amplitude Avoidance (PLAA) and Preventive Safe-Distance Avoidance (PSDA), which account for 50%, 26%, 15%, and 9% of the total, respectively. The proposed method provides a novel research perspective and certain practical application value in comprehending the micro-behavioural traits of ships and advancing the field of Maritime Autonomous Surface Ships (MASS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信