Shankar G. Randive, Prakash A. Mahanwar, Balkrishna J. Lokhande
{"title":"用于高电容的甲醇调谐喷雾热解高孔氧化镍薄膜NiO@Graphite不对称超级电容器和电动力学分析","authors":"Shankar G. Randive, Prakash A. Mahanwar, Balkrishna J. Lokhande","doi":"10.1016/j.inoche.2025.115583","DOIUrl":null,"url":null,"abstract":"<div><div>Pristine nickel oxide thin films were synthesized via spray pyrolysis using methanol, ethanol, and propanol-based precursor solutions to probe the solvent effect on structure, surface, and electrochemical properties. XRD and HRTEM confirmed polycrystalline NiO with solvent-dependent crystallite size, while FESEM, AFM, and BET analyses revealed enhanced porosity and surface roughness in the methanol-derived film. Wettability studies demonstrated hydrophilicity in methanol-based films, favoring ion transport. Electrochemical evaluation showed the methanol electrode achieved 113.67 F g<sup>−1</sup> at 0.002 V s<sup>−1</sup> with 92 % capacitance retention over 5000 cycles. Electrokinetic analysis confirmed 86 % capacitive contribution, indicating fast redox kinetics. An asymmetric Nm@Graphite device delivered 75.02 Wh kg<sup>−1</sup> energy density and retained 83–87 % capacitance after 1000 cycles. These results highlight solvent-tuned NiO electrodes as promising candidates for high-performance supercapacitors.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"182 ","pages":"Article 115583"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Methanol-Tuned Spray Pyrolyzed Highly Porous Nickel Oxide Thin Films for High-Capacitance NiO@Graphite Asymmetric Supercapacitors and Electrokinetic Analysis”\",\"authors\":\"Shankar G. Randive, Prakash A. Mahanwar, Balkrishna J. Lokhande\",\"doi\":\"10.1016/j.inoche.2025.115583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pristine nickel oxide thin films were synthesized via spray pyrolysis using methanol, ethanol, and propanol-based precursor solutions to probe the solvent effect on structure, surface, and electrochemical properties. XRD and HRTEM confirmed polycrystalline NiO with solvent-dependent crystallite size, while FESEM, AFM, and BET analyses revealed enhanced porosity and surface roughness in the methanol-derived film. Wettability studies demonstrated hydrophilicity in methanol-based films, favoring ion transport. Electrochemical evaluation showed the methanol electrode achieved 113.67 F g<sup>−1</sup> at 0.002 V s<sup>−1</sup> with 92 % capacitance retention over 5000 cycles. Electrokinetic analysis confirmed 86 % capacitive contribution, indicating fast redox kinetics. An asymmetric Nm@Graphite device delivered 75.02 Wh kg<sup>−1</sup> energy density and retained 83–87 % capacitance after 1000 cycles. These results highlight solvent-tuned NiO electrodes as promising candidates for high-performance supercapacitors.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"182 \",\"pages\":\"Article 115583\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700325017009\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325017009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
以甲醇、乙醇和丙醇基前驱体溶液为原料,采用喷雾热解法制备了氧化镍薄膜,考察了溶剂对氧化镍薄膜结构、表面和电化学性能的影响。XRD和HRTEM证实了NiO的多晶晶粒尺寸与溶剂有关,而FESEM、AFM和BET分析显示,甲醇衍生膜的孔隙率和表面粗糙度都有所提高。润湿性研究表明,甲醇基薄膜具有亲水性,有利于离子传输。电化学评价表明,在0.002 V s−1下,甲醇电极的电容量保持率为113.67 F g−1,循环5000次后电容保持率为92%。电动力学分析证实86%的电容贡献,表明快速的氧化还原动力学。不对称Nm@Graphite装置提供75.02 Wh kg−1能量密度,并在1000次循环后保持83 - 87%的电容。这些结果突出了溶剂调谐NiO电极作为高性能超级电容器的有前途的候选者。
“Methanol-Tuned Spray Pyrolyzed Highly Porous Nickel Oxide Thin Films for High-Capacitance NiO@Graphite Asymmetric Supercapacitors and Electrokinetic Analysis”
Pristine nickel oxide thin films were synthesized via spray pyrolysis using methanol, ethanol, and propanol-based precursor solutions to probe the solvent effect on structure, surface, and electrochemical properties. XRD and HRTEM confirmed polycrystalline NiO with solvent-dependent crystallite size, while FESEM, AFM, and BET analyses revealed enhanced porosity and surface roughness in the methanol-derived film. Wettability studies demonstrated hydrophilicity in methanol-based films, favoring ion transport. Electrochemical evaluation showed the methanol electrode achieved 113.67 F g−1 at 0.002 V s−1 with 92 % capacitance retention over 5000 cycles. Electrokinetic analysis confirmed 86 % capacitive contribution, indicating fast redox kinetics. An asymmetric Nm@Graphite device delivered 75.02 Wh kg−1 energy density and retained 83–87 % capacitance after 1000 cycles. These results highlight solvent-tuned NiO electrodes as promising candidates for high-performance supercapacitors.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.