Prashant Saini , Julian D. Osorio , Munjal P. Shah , Umang N. Patel , Akhil Nelapudi , Luis A. Porto-Hernandez
{"title":"灵感来自大自然的莲花状鳍结合混合纳米颗粒和金属泡沫,用于高性能的潜热热能储存","authors":"Prashant Saini , Julian D. Osorio , Munjal P. Shah , Umang N. Patel , Akhil Nelapudi , Luis A. Porto-Hernandez","doi":"10.1016/j.ijheatmasstransfer.2025.127897","DOIUrl":null,"url":null,"abstract":"<div><div>Latent heat thermal energy storage (LHTES) systems play a critical role in renewable energy integration by providing high energy density and nearly isothermal operation during phase transitions. However, their performance is often limited by slow melting/charging rates, which motivates the search for enhanced heat transfer designs. This study investigates the melting behavior of RT-82 phase change material (PCM) using novel lotus-shaped fins combined with copper metal foam and conductive graphene nanoparticles and carbon nanotubes. A two-dimensional enthalpy–porosity model in ANSYS Fluent was developed to simulate the charging/melting process, capturing non-thermal equilibrium between the foam and PCM/nano-PCM. In this study, effects of fin geometry, nanoparticle concentration, and foam porosity on melting dynamics and cost-performance trade-offs were investigated. Results showed that natural convection accelerated melting by ∼12% compared to conduction-only scenarios. Optimized lotus-shaped fins with higher fin density (T3F4 and T3F10) achieved up to 63% faster melting relative to sparse configurations. Graphene nanoparticles improved thermal conductivity, with a 6% volume fraction, by reducing melting time by ∼6.9%, while their combination with 75% porosity foam achieved a maximum reduction in the melting time of ∼51% compared to pure PCM. Cost-performance analysis identified T3F4 as the most balanced design, offering rapid thermal response without excessive material costs, while moderate-density designs like T3S6 provided economical alternatives with acceptable performance. These results highlight the performance enhancement that can be achieved by integrating bio-inspired fins, nanoparticles, and foams, into compact and efficient LHTES for solar heating, building thermal management, and industrial waste-heat recovery applications.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"255 ","pages":"Article 127897"},"PeriodicalIF":5.8000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature-inspired lotus-shaped fins combined with hybrid nanoparticles and metal foam for high-performance latent heat thermal energy storage\",\"authors\":\"Prashant Saini , Julian D. Osorio , Munjal P. Shah , Umang N. Patel , Akhil Nelapudi , Luis A. Porto-Hernandez\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Latent heat thermal energy storage (LHTES) systems play a critical role in renewable energy integration by providing high energy density and nearly isothermal operation during phase transitions. However, their performance is often limited by slow melting/charging rates, which motivates the search for enhanced heat transfer designs. This study investigates the melting behavior of RT-82 phase change material (PCM) using novel lotus-shaped fins combined with copper metal foam and conductive graphene nanoparticles and carbon nanotubes. A two-dimensional enthalpy–porosity model in ANSYS Fluent was developed to simulate the charging/melting process, capturing non-thermal equilibrium between the foam and PCM/nano-PCM. In this study, effects of fin geometry, nanoparticle concentration, and foam porosity on melting dynamics and cost-performance trade-offs were investigated. Results showed that natural convection accelerated melting by ∼12% compared to conduction-only scenarios. Optimized lotus-shaped fins with higher fin density (T3F4 and T3F10) achieved up to 63% faster melting relative to sparse configurations. Graphene nanoparticles improved thermal conductivity, with a 6% volume fraction, by reducing melting time by ∼6.9%, while their combination with 75% porosity foam achieved a maximum reduction in the melting time of ∼51% compared to pure PCM. Cost-performance analysis identified T3F4 as the most balanced design, offering rapid thermal response without excessive material costs, while moderate-density designs like T3S6 provided economical alternatives with acceptable performance. These results highlight the performance enhancement that can be achieved by integrating bio-inspired fins, nanoparticles, and foams, into compact and efficient LHTES for solar heating, building thermal management, and industrial waste-heat recovery applications.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"255 \",\"pages\":\"Article 127897\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025012323\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025012323","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Nature-inspired lotus-shaped fins combined with hybrid nanoparticles and metal foam for high-performance latent heat thermal energy storage
Latent heat thermal energy storage (LHTES) systems play a critical role in renewable energy integration by providing high energy density and nearly isothermal operation during phase transitions. However, their performance is often limited by slow melting/charging rates, which motivates the search for enhanced heat transfer designs. This study investigates the melting behavior of RT-82 phase change material (PCM) using novel lotus-shaped fins combined with copper metal foam and conductive graphene nanoparticles and carbon nanotubes. A two-dimensional enthalpy–porosity model in ANSYS Fluent was developed to simulate the charging/melting process, capturing non-thermal equilibrium between the foam and PCM/nano-PCM. In this study, effects of fin geometry, nanoparticle concentration, and foam porosity on melting dynamics and cost-performance trade-offs were investigated. Results showed that natural convection accelerated melting by ∼12% compared to conduction-only scenarios. Optimized lotus-shaped fins with higher fin density (T3F4 and T3F10) achieved up to 63% faster melting relative to sparse configurations. Graphene nanoparticles improved thermal conductivity, with a 6% volume fraction, by reducing melting time by ∼6.9%, while their combination with 75% porosity foam achieved a maximum reduction in the melting time of ∼51% compared to pure PCM. Cost-performance analysis identified T3F4 as the most balanced design, offering rapid thermal response without excessive material costs, while moderate-density designs like T3S6 provided economical alternatives with acceptable performance. These results highlight the performance enhancement that can be achieved by integrating bio-inspired fins, nanoparticles, and foams, into compact and efficient LHTES for solar heating, building thermal management, and industrial waste-heat recovery applications.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer