Shuai-hua Li , Meng-jing Feng , Hao-tian Shao , Jian-hua Liu, Hua Wu, Li Yuan, Xiao-yuan Ma, Gong-zheng Hu
{"title":"粘菌素与羟氯胺共载PLGA纳米微球逆转粘菌素耐药,可有效治疗耐粘菌素大肠杆菌感染","authors":"Shuai-hua Li , Meng-jing Feng , Hao-tian Shao , Jian-hua Liu, Hua Wu, Li Yuan, Xiao-yuan Ma, Gong-zheng Hu","doi":"10.1016/j.ijpx.2025.100402","DOIUrl":null,"url":null,"abstract":"<div><div>Colistin (COL) is widely recognized as the last line of defense for treating MDR-negative bacterial infections, but currently, bacteria have a very serious resistance to COL. The combination of antibacterial drugs and adjuvant drugs can reverse drug resistance, enhance antibacterial activity, and improve therapeutic effects. It is currently regarded as a new safe and effective strategy for controlling drug resistance. In this study, we found that the combination of Oxyclozanide (OXY) and colistin can effectively reverse colistin resistance. For multiple colistin resistant <em>Escherichia coli</em> (<em>E. coli</em>) strains, COL-OXY-PLGA @MS significantly reduced the MIC of COL monotherapy (8 < MIC<64) by 40–160 times. The prepared COL-OXY-PLGA@MS had particle sizes of 140–160 nm, PDI of 0.03–0.2, COL loading of 5.14 % and OXY loading of 2.93 %. The release rate of COL in COL-OXY-PLGA@MS at 72 h was 39.31 %, and there was no burst release. Cytotoxicity assay, hemolysis test and long-term injection tests in mice have proved that COL-OXY-PLGA@MS has good safety and biocompatibility. It was clearly observed by SEM that the COL-OXY-PLGA@MS group disrupted <em>E. coli 58</em> cells under 1 h of action with obvious exudation of contents, and large number of cells ruptured at 4 h and 12 h. COL-OXY-PLGA@MS significantly reduced mortality rate after <em>E. coli</em> infection in mice. This study successfully prepared COL-OXY-PLGA@MS with high safety and strong antibacterial effect, which has great potential in the treatment of infections caused by color-resistant Gram-negative bacteria and provides a new and important strategy for the clinical application of colistin.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100402"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colistin and Oxyclozanide co-loaded PLGA nano-microspheres to reverse colistin resistance can effectively treat colistin-resistant Escherichia coli infections\",\"authors\":\"Shuai-hua Li , Meng-jing Feng , Hao-tian Shao , Jian-hua Liu, Hua Wu, Li Yuan, Xiao-yuan Ma, Gong-zheng Hu\",\"doi\":\"10.1016/j.ijpx.2025.100402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Colistin (COL) is widely recognized as the last line of defense for treating MDR-negative bacterial infections, but currently, bacteria have a very serious resistance to COL. The combination of antibacterial drugs and adjuvant drugs can reverse drug resistance, enhance antibacterial activity, and improve therapeutic effects. It is currently regarded as a new safe and effective strategy for controlling drug resistance. In this study, we found that the combination of Oxyclozanide (OXY) and colistin can effectively reverse colistin resistance. For multiple colistin resistant <em>Escherichia coli</em> (<em>E. coli</em>) strains, COL-OXY-PLGA @MS significantly reduced the MIC of COL monotherapy (8 < MIC<64) by 40–160 times. The prepared COL-OXY-PLGA@MS had particle sizes of 140–160 nm, PDI of 0.03–0.2, COL loading of 5.14 % and OXY loading of 2.93 %. The release rate of COL in COL-OXY-PLGA@MS at 72 h was 39.31 %, and there was no burst release. Cytotoxicity assay, hemolysis test and long-term injection tests in mice have proved that COL-OXY-PLGA@MS has good safety and biocompatibility. It was clearly observed by SEM that the COL-OXY-PLGA@MS group disrupted <em>E. coli 58</em> cells under 1 h of action with obvious exudation of contents, and large number of cells ruptured at 4 h and 12 h. COL-OXY-PLGA@MS significantly reduced mortality rate after <em>E. coli</em> infection in mice. This study successfully prepared COL-OXY-PLGA@MS with high safety and strong antibacterial effect, which has great potential in the treatment of infections caused by color-resistant Gram-negative bacteria and provides a new and important strategy for the clinical application of colistin.</div></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"10 \",\"pages\":\"Article 100402\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156725000878\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000878","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Colistin and Oxyclozanide co-loaded PLGA nano-microspheres to reverse colistin resistance can effectively treat colistin-resistant Escherichia coli infections
Colistin (COL) is widely recognized as the last line of defense for treating MDR-negative bacterial infections, but currently, bacteria have a very serious resistance to COL. The combination of antibacterial drugs and adjuvant drugs can reverse drug resistance, enhance antibacterial activity, and improve therapeutic effects. It is currently regarded as a new safe and effective strategy for controlling drug resistance. In this study, we found that the combination of Oxyclozanide (OXY) and colistin can effectively reverse colistin resistance. For multiple colistin resistant Escherichia coli (E. coli) strains, COL-OXY-PLGA @MS significantly reduced the MIC of COL monotherapy (8 < MIC<64) by 40–160 times. The prepared COL-OXY-PLGA@MS had particle sizes of 140–160 nm, PDI of 0.03–0.2, COL loading of 5.14 % and OXY loading of 2.93 %. The release rate of COL in COL-OXY-PLGA@MS at 72 h was 39.31 %, and there was no burst release. Cytotoxicity assay, hemolysis test and long-term injection tests in mice have proved that COL-OXY-PLGA@MS has good safety and biocompatibility. It was clearly observed by SEM that the COL-OXY-PLGA@MS group disrupted E. coli 58 cells under 1 h of action with obvious exudation of contents, and large number of cells ruptured at 4 h and 12 h. COL-OXY-PLGA@MS significantly reduced mortality rate after E. coli infection in mice. This study successfully prepared COL-OXY-PLGA@MS with high safety and strong antibacterial effect, which has great potential in the treatment of infections caused by color-resistant Gram-negative bacteria and provides a new and important strategy for the clinical application of colistin.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.