通过神经自适应控制器和预测建模增强锂离子电池浆液挤出

IF 7.1 Q1 ENGINEERING, CHEMICAL
Somayeh Hosseinhashemi, Marcel Weber, Tim Grenda, Arno Kwade, Carsten Schilde
{"title":"通过神经自适应控制器和预测建模增强锂离子电池浆液挤出","authors":"Somayeh Hosseinhashemi,&nbsp;Marcel Weber,&nbsp;Tim Grenda,&nbsp;Arno Kwade,&nbsp;Carsten Schilde","doi":"10.1016/j.ceja.2025.100868","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial-scale extrusion of lithium-ion battery slurries is a complex process where maintaining stability is critical for final product quality. This study introduces a neuro-adaptive controller designed to optimize and stabilize cathode slurry extrusion, addressing the common industrial challenge of limited data availability. The core innovation of our work is the integration of a data-efficient predictive model, which functions as a high-fidelity AI simulator, directly into a feedforward control loop. This hybrid approach uniquely addresses the challenge of process optimization in data-scarce environments by enabling virtual exploration of the entire operational parameter space, eliminating the need for costly and time-consuming physical experiments. We first generated a dataset (68 data points) through systematic experiments varying solids content, screw speed, and mass flow rate. We then demonstrate that a gradient boosting regressor model outperforms a more complex deep neural network for this sparse industrial dataset, establishing it as the ideal foundation for our AI simulator. The neuro-adaptive controller leverages this trained AI simulator to proactively predict critical process outputs (specific energy and torque) and identify optimal input parameters that minimize process deviations. This integrated approach, validated in a laboratory setting, confirms that our neuro-adaptive controller framework enhances the stability and efficiency of slurry extrusion, presenting a practical and data-efficient pathway toward smart battery manufacturing.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"24 ","pages":"Article 100868"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing lithium-ion battery slurry extrusion through neuro-adaptive controller and predictive modeling\",\"authors\":\"Somayeh Hosseinhashemi,&nbsp;Marcel Weber,&nbsp;Tim Grenda,&nbsp;Arno Kwade,&nbsp;Carsten Schilde\",\"doi\":\"10.1016/j.ceja.2025.100868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial-scale extrusion of lithium-ion battery slurries is a complex process where maintaining stability is critical for final product quality. This study introduces a neuro-adaptive controller designed to optimize and stabilize cathode slurry extrusion, addressing the common industrial challenge of limited data availability. The core innovation of our work is the integration of a data-efficient predictive model, which functions as a high-fidelity AI simulator, directly into a feedforward control loop. This hybrid approach uniquely addresses the challenge of process optimization in data-scarce environments by enabling virtual exploration of the entire operational parameter space, eliminating the need for costly and time-consuming physical experiments. We first generated a dataset (68 data points) through systematic experiments varying solids content, screw speed, and mass flow rate. We then demonstrate that a gradient boosting regressor model outperforms a more complex deep neural network for this sparse industrial dataset, establishing it as the ideal foundation for our AI simulator. The neuro-adaptive controller leverages this trained AI simulator to proactively predict critical process outputs (specific energy and torque) and identify optimal input parameters that minimize process deviations. This integrated approach, validated in a laboratory setting, confirms that our neuro-adaptive controller framework enhances the stability and efficiency of slurry extrusion, presenting a practical and data-efficient pathway toward smart battery manufacturing.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"24 \",\"pages\":\"Article 100868\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125001656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125001656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业规模的锂离子电池浆料挤压是一个复杂的过程,保持稳定性对最终产品质量至关重要。本研究介绍了一种神经自适应控制器,旨在优化和稳定阴极浆料挤压,解决数据可用性有限的常见工业挑战。我们工作的核心创新是将数据高效预测模型集成到前馈控制回路中,该模型可作为高保真AI模拟器。这种混合方法通过实现对整个操作参数空间的虚拟探索,消除了对昂贵且耗时的物理实验的需要,从而独特地解决了数据稀缺环境中流程优化的挑战。我们首先通过改变固体含量、螺杆转速和质量流量的系统实验生成了一个数据集(68个数据点)。然后,我们证明了梯度增强回归模型优于这个稀疏工业数据集的更复杂的深度神经网络,将其建立为我们的人工智能模拟器的理想基础。神经自适应控制器利用这个训练有素的人工智能模拟器来主动预测关键过程输出(比能量和扭矩),并确定将过程偏差最小化的最佳输入参数。这种集成方法在实验室环境中得到验证,证实了我们的神经自适应控制器框架提高了浆液挤压的稳定性和效率,为智能电池制造提供了一条实用且数据高效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing lithium-ion battery slurry extrusion through neuro-adaptive controller and predictive modeling
Industrial-scale extrusion of lithium-ion battery slurries is a complex process where maintaining stability is critical for final product quality. This study introduces a neuro-adaptive controller designed to optimize and stabilize cathode slurry extrusion, addressing the common industrial challenge of limited data availability. The core innovation of our work is the integration of a data-efficient predictive model, which functions as a high-fidelity AI simulator, directly into a feedforward control loop. This hybrid approach uniquely addresses the challenge of process optimization in data-scarce environments by enabling virtual exploration of the entire operational parameter space, eliminating the need for costly and time-consuming physical experiments. We first generated a dataset (68 data points) through systematic experiments varying solids content, screw speed, and mass flow rate. We then demonstrate that a gradient boosting regressor model outperforms a more complex deep neural network for this sparse industrial dataset, establishing it as the ideal foundation for our AI simulator. The neuro-adaptive controller leverages this trained AI simulator to proactively predict critical process outputs (specific energy and torque) and identify optimal input parameters that minimize process deviations. This integrated approach, validated in a laboratory setting, confirms that our neuro-adaptive controller framework enhances the stability and efficiency of slurry extrusion, presenting a practical and data-efficient pathway toward smart battery manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信