非傅立叶和非菲克输运切线双曲纳米流体混合对流的机器学习辅助建模

IF 6.4 2区 工程技术 Q1 MECHANICS
M. Nasir , M. Waqas , Nurnadiah Zamri , Arij Alfaidi , Sarra Ayouni , Amjad A. Alsuwaylimi
{"title":"非傅立叶和非菲克输运切线双曲纳米流体混合对流的机器学习辅助建模","authors":"M. Nasir ,&nbsp;M. Waqas ,&nbsp;Nurnadiah Zamri ,&nbsp;Arij Alfaidi ,&nbsp;Sarra Ayouni ,&nbsp;Amjad A. Alsuwaylimi","doi":"10.1016/j.icheatmasstransfer.2025.109709","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation elaborates quadratic dual convection features in stretching sheet induced hyperbolic-tangent nanoliquid deploying modern fluxes based on generalized mass and heat transmission models. The modeled nonlinear transport expression accounts temperature-dependent conductivity, thermal generation and concentration-dependent diffusivity. Buongiorno nanomaterial diffusion model is modified in view of modern thermosolutal fluxes. The governing mathematical expressions derived subject to traditional boundary-layer concept are transfigured to ordinary differential framework by utilizing apposite similarity constraints. The numerical bvp4c approach is then utilized to solve the nonlinear equations, enabling the simulation to be precise. The intelligent ANNs-LMM model is trained and validated by utilizing reference dataset attained from the numerical Bvp4c approach with the help of MATLAB software, which proficiently handles the coupled nonlinear system of equations. Furthermore, the reference dataset is designed to cover the flow range of functional parameters scenarios, empowering all-inclusive testing, optimal validation and training performance of the neural network system. To show the various effects of functional parameters on the performance of proposed ANNs-LMM, histogram errors, mean square errors and regression plots are visualized for each case. The absolute errors between the reference dataset ranges from <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup><mspace></mspace></math></span>to<span><math><mspace></mspace><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></math></span>, reports the excellent accuracy of the intelligent ANNs-LMM approach. It is perceived that velocity profile escalates for increasing mixed convection parameter whereas it declines for higher values of power-law index parameter. The present findings are relevant in constructing nanoliquid-based systems in state-of-the-art manufacturing and coating technologies.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"169 ","pages":"Article 109709"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted modeling of mixed convection in tangent hyperbolic nanofluid with non-Fourier and non-Fickian transport\",\"authors\":\"M. Nasir ,&nbsp;M. Waqas ,&nbsp;Nurnadiah Zamri ,&nbsp;Arij Alfaidi ,&nbsp;Sarra Ayouni ,&nbsp;Amjad A. Alsuwaylimi\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.109709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This investigation elaborates quadratic dual convection features in stretching sheet induced hyperbolic-tangent nanoliquid deploying modern fluxes based on generalized mass and heat transmission models. The modeled nonlinear transport expression accounts temperature-dependent conductivity, thermal generation and concentration-dependent diffusivity. Buongiorno nanomaterial diffusion model is modified in view of modern thermosolutal fluxes. The governing mathematical expressions derived subject to traditional boundary-layer concept are transfigured to ordinary differential framework by utilizing apposite similarity constraints. The numerical bvp4c approach is then utilized to solve the nonlinear equations, enabling the simulation to be precise. The intelligent ANNs-LMM model is trained and validated by utilizing reference dataset attained from the numerical Bvp4c approach with the help of MATLAB software, which proficiently handles the coupled nonlinear system of equations. Furthermore, the reference dataset is designed to cover the flow range of functional parameters scenarios, empowering all-inclusive testing, optimal validation and training performance of the neural network system. To show the various effects of functional parameters on the performance of proposed ANNs-LMM, histogram errors, mean square errors and regression plots are visualized for each case. The absolute errors between the reference dataset ranges from <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup><mspace></mspace></math></span>to<span><math><mspace></mspace><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></math></span>, reports the excellent accuracy of the intelligent ANNs-LMM approach. It is perceived that velocity profile escalates for increasing mixed convection parameter whereas it declines for higher values of power-law index parameter. The present findings are relevant in constructing nanoliquid-based systems in state-of-the-art manufacturing and coating technologies.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"169 \",\"pages\":\"Article 109709\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325011352\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325011352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于广义质量和传热模型,阐述了采用现代通量的拉伸片诱导双曲切线纳米液体的二次双对流特征。模拟的非线性输运表达式考虑了与温度相关的电导率、热生成和与浓度相关的扩散率。根据现代热溶质通量对纳米材料扩散模型进行了修正。利用适当的相似约束,将传统边界层概念下的控制数学表达式转化为常微分框架。然后利用数值bvp4c方法求解非线性方程,使仿真更加精确。利用数值Bvp4c方法获得的参考数据集,借助MATLAB软件对智能ann - lmm模型进行训练和验证,该软件能熟练地处理耦合非线性方程组。此外,参考数据集旨在涵盖功能参数场景的流动范围,从而实现神经网络系统的全包测试、最优验证和训练性能。为了显示功能参数对所提出的ann - lmm性能的各种影响,对每种情况的直方图误差、均方误差和回归图进行了可视化。参考数据集之间的绝对误差在10−8到10−10之间,表明智能ann - lmm方法具有良好的精度。随着混合对流参数的增大,速度剖面增大,而幂律指数参数的增大,速度剖面减小。目前的研究结果与在最先进的制造和涂层技术中构建纳米液体基系统有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-assisted modeling of mixed convection in tangent hyperbolic nanofluid with non-Fourier and non-Fickian transport
This investigation elaborates quadratic dual convection features in stretching sheet induced hyperbolic-tangent nanoliquid deploying modern fluxes based on generalized mass and heat transmission models. The modeled nonlinear transport expression accounts temperature-dependent conductivity, thermal generation and concentration-dependent diffusivity. Buongiorno nanomaterial diffusion model is modified in view of modern thermosolutal fluxes. The governing mathematical expressions derived subject to traditional boundary-layer concept are transfigured to ordinary differential framework by utilizing apposite similarity constraints. The numerical bvp4c approach is then utilized to solve the nonlinear equations, enabling the simulation to be precise. The intelligent ANNs-LMM model is trained and validated by utilizing reference dataset attained from the numerical Bvp4c approach with the help of MATLAB software, which proficiently handles the coupled nonlinear system of equations. Furthermore, the reference dataset is designed to cover the flow range of functional parameters scenarios, empowering all-inclusive testing, optimal validation and training performance of the neural network system. To show the various effects of functional parameters on the performance of proposed ANNs-LMM, histogram errors, mean square errors and regression plots are visualized for each case. The absolute errors between the reference dataset ranges from 108to1010, reports the excellent accuracy of the intelligent ANNs-LMM approach. It is perceived that velocity profile escalates for increasing mixed convection parameter whereas it declines for higher values of power-law index parameter. The present findings are relevant in constructing nanoliquid-based systems in state-of-the-art manufacturing and coating technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信