无机NiFe2O4/g-C3N4复合催化剂的合成、表征及其在过氧单硫酸盐活化降解抗生素中的应用

IF 5.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Adeel Ahmed , Mohamed Abdel Rafea , Shamroza Mubarik , Magdi E.A. Zaki , Sami A. Al-Hussain , Abdullah K. Alanazi , Mohamed R. El-Aassar , Muhammad Aadil , Salma Saddeek
{"title":"无机NiFe2O4/g-C3N4复合催化剂的合成、表征及其在过氧单硫酸盐活化降解抗生素中的应用","authors":"Adeel Ahmed ,&nbsp;Mohamed Abdel Rafea ,&nbsp;Shamroza Mubarik ,&nbsp;Magdi E.A. Zaki ,&nbsp;Sami A. Al-Hussain ,&nbsp;Abdullah K. Alanazi ,&nbsp;Mohamed R. El-Aassar ,&nbsp;Muhammad Aadil ,&nbsp;Salma Saddeek","doi":"10.1016/j.inoche.2025.115581","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of exceptionally effective and reusable heterogeneous catalysts for the activation of peroxymonosulfate (PMS) to eliminate the enduring contamination by antibiotic drugs, particularly Tetracycline (TC), in aquatic systems continues to pose a considerable challenge. Herein, we present a unique and efficient magnetic composite catalyst developed by anchoring nickel ferrite over graphitic carbon nitride (NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>) through a sol-gel method that can easily activate PMS to effectively degrade TC. Evidently, the NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/PMS achieved a maximum TC removal effectiveness of 97.54 % in 42 min, surpassing NiFe<sub>2</sub>O<sub>4</sub>/PMS (72.65 %), respectively, under optimized parameters ([catalyst] = 0.4 g/L, [PMS] = 24 mM, [TC] = 18 mg/L, [pH] = 3.0). The catalytic efficacy of NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites surpassed that of the alone NiFe<sub>2</sub>O<sub>4</sub> or g-C<sub>3</sub>N<sub>4</sub>, attributable to the cyclic interactions of Ni<sup>2+</sup>/Ni<sup>3+</sup> and Fe<sup>3+</sup>/Fe<sup>2+</sup> at the interfaces of NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>. The radical trapping experiments and EPR analyses revealed that SO<sub>4</sub><sup>•−</sup>, <sup>•</sup>OH, and <sup>1</sup>O<sub>2</sub> were the principal reactive species accountable for the mineralization of TC. Additionally, a potential mechanism for the TC degradation process was put forward. The magnetic NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites have shown remarkable recycling ability and versatility. Ultimately, this work presents an effective, rapid, and eco-friendly PMS activation approach that offers sustainable technological support for the remediation of antibiotic drug contaminants in water.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"182 ","pages":"Article 115581"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in inorganic NiFe2O4/g-C3N4 composite catalysts: Synthesis, characterization, and application in peroxymonosulfate activation for antibiotic degradation\",\"authors\":\"Adeel Ahmed ,&nbsp;Mohamed Abdel Rafea ,&nbsp;Shamroza Mubarik ,&nbsp;Magdi E.A. Zaki ,&nbsp;Sami A. Al-Hussain ,&nbsp;Abdullah K. Alanazi ,&nbsp;Mohamed R. El-Aassar ,&nbsp;Muhammad Aadil ,&nbsp;Salma Saddeek\",\"doi\":\"10.1016/j.inoche.2025.115581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fabrication of exceptionally effective and reusable heterogeneous catalysts for the activation of peroxymonosulfate (PMS) to eliminate the enduring contamination by antibiotic drugs, particularly Tetracycline (TC), in aquatic systems continues to pose a considerable challenge. Herein, we present a unique and efficient magnetic composite catalyst developed by anchoring nickel ferrite over graphitic carbon nitride (NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>) through a sol-gel method that can easily activate PMS to effectively degrade TC. Evidently, the NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/PMS achieved a maximum TC removal effectiveness of 97.54 % in 42 min, surpassing NiFe<sub>2</sub>O<sub>4</sub>/PMS (72.65 %), respectively, under optimized parameters ([catalyst] = 0.4 g/L, [PMS] = 24 mM, [TC] = 18 mg/L, [pH] = 3.0). The catalytic efficacy of NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites surpassed that of the alone NiFe<sub>2</sub>O<sub>4</sub> or g-C<sub>3</sub>N<sub>4</sub>, attributable to the cyclic interactions of Ni<sup>2+</sup>/Ni<sup>3+</sup> and Fe<sup>3+</sup>/Fe<sup>2+</sup> at the interfaces of NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>. The radical trapping experiments and EPR analyses revealed that SO<sub>4</sub><sup>•−</sup>, <sup>•</sup>OH, and <sup>1</sup>O<sub>2</sub> were the principal reactive species accountable for the mineralization of TC. Additionally, a potential mechanism for the TC degradation process was put forward. The magnetic NiFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composites have shown remarkable recycling ability and versatility. Ultimately, this work presents an effective, rapid, and eco-friendly PMS activation approach that offers sustainable technological support for the remediation of antibiotic drug contaminants in water.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"182 \",\"pages\":\"Article 115581\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700325016983\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325016983","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

制备特别有效和可重复使用的多相催化剂来激活过氧单硫酸盐(PMS),以消除水生系统中抗生素药物,特别是四环素(TC)的持久污染,仍然是一个相当大的挑战。本文提出了一种独特而高效的磁性复合催化剂,该催化剂通过溶胶-凝胶法将铁氧体镍锚定在石墨氮化碳(NiFe2O4/g-C3N4)上,可以很容易地激活PMS,有效地降解TC。结果表明,在[催化剂]= 0.4 g/L, [PMS] = 24 mM, [TC] = 18 mg/L, [pH] = 3.0条件下,NiFe2O4/g- c3n4 /PMS在42 min内的最大TC去除率为97.54%,分别超过了NiFe2O4/PMS的72.65%。NiFe2O4/g-C3N4复合材料的催化效果优于单独的NiFe2O4或g-C3N4,这是由于Ni2+/Ni3+和Fe3+/Fe2+在NiFe2O4/g-C3N4界面上的循环相互作用。自由基捕获实验和EPR分析表明,SO4•−、•OH和1O2是导致TC矿化的主要活性物质。此外,还提出了TC降解过程的潜在机理。磁性NiFe2O4/g-C3N4复合材料具有良好的可回收性和通用性。最终,本研究提出了一种有效、快速、环保的PMS活化方法,为水中抗生素药物污染物的修复提供了可持续的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advances in inorganic NiFe2O4/g-C3N4 composite catalysts: Synthesis, characterization, and application in peroxymonosulfate activation for antibiotic degradation

Advances in inorganic NiFe2O4/g-C3N4 composite catalysts: Synthesis, characterization, and application in peroxymonosulfate activation for antibiotic degradation
The fabrication of exceptionally effective and reusable heterogeneous catalysts for the activation of peroxymonosulfate (PMS) to eliminate the enduring contamination by antibiotic drugs, particularly Tetracycline (TC), in aquatic systems continues to pose a considerable challenge. Herein, we present a unique and efficient magnetic composite catalyst developed by anchoring nickel ferrite over graphitic carbon nitride (NiFe2O4/g-C3N4) through a sol-gel method that can easily activate PMS to effectively degrade TC. Evidently, the NiFe2O4/g-C3N4/PMS achieved a maximum TC removal effectiveness of 97.54 % in 42 min, surpassing NiFe2O4/PMS (72.65 %), respectively, under optimized parameters ([catalyst] = 0.4 g/L, [PMS] = 24 mM, [TC] = 18 mg/L, [pH] = 3.0). The catalytic efficacy of NiFe2O4/g-C3N4 composites surpassed that of the alone NiFe2O4 or g-C3N4, attributable to the cyclic interactions of Ni2+/Ni3+ and Fe3+/Fe2+ at the interfaces of NiFe2O4/g-C3N4. The radical trapping experiments and EPR analyses revealed that SO4•−, OH, and 1O2 were the principal reactive species accountable for the mineralization of TC. Additionally, a potential mechanism for the TC degradation process was put forward. The magnetic NiFe2O4/g-C3N4 composites have shown remarkable recycling ability and versatility. Ultimately, this work presents an effective, rapid, and eco-friendly PMS activation approach that offers sustainable technological support for the remediation of antibiotic drug contaminants in water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信