Zi Li , Xinyu Yang , Chuanzhi Ju , Tian Tian , Jingwei Hou , Zhigang Hu , Jianxin Zou
{"title":"面向工业应用的金属有机骨架的合成、标度、加工和技术经济分析的最新进展","authors":"Zi Li , Xinyu Yang , Chuanzhi Ju , Tian Tian , Jingwei Hou , Zhigang Hu , Jianxin Zou","doi":"10.1016/j.mser.2025.101123","DOIUrl":null,"url":null,"abstract":"<div><div>Economical and efficient synthesis and processing technologies are essential for industrial-level applications of metal-organic frameworks (MOFs). To bridge the gap between lab-scale synthesis and commercial applications, we here provide a comprehensive and holistic review on the challenges of transitioning MOF materials from the laboratory agent to commercial products, and further to industrial-scale applications, with an emphasis on existing approaches and technologies for the large-scale synthesis and processing and technoeconomic feasibility of MOFs. We also pinpoint the fundamental principles on the metal-ligand reaction mechanism and elaborate on their impact on MOF synthesis and stability. In addition, novel synthesis mechanisms and processing methods and technologies are covered, such as electron-beam radiation method, melt-quench method, sol-gel method, liquid-phase sintering technology, monolithic technology, plasma/laser-assisted technology, etc. In particular, the importance of AI in the design, fabrication and processing of MOFs is highlignted in the current milieu of AI+materials paradigm. We thus aim to provide in-depth insights into the design and development of efficient and versatile synthetic and processing approaches and technologies to promote practical MOF-based applications in addressing the current global energy and environment challenges.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"167 ","pages":"Article 101123"},"PeriodicalIF":31.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in the synthesis, scaling, processing and technoeconomic analysis of metal-organic frameworks towards industrial applications\",\"authors\":\"Zi Li , Xinyu Yang , Chuanzhi Ju , Tian Tian , Jingwei Hou , Zhigang Hu , Jianxin Zou\",\"doi\":\"10.1016/j.mser.2025.101123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Economical and efficient synthesis and processing technologies are essential for industrial-level applications of metal-organic frameworks (MOFs). To bridge the gap between lab-scale synthesis and commercial applications, we here provide a comprehensive and holistic review on the challenges of transitioning MOF materials from the laboratory agent to commercial products, and further to industrial-scale applications, with an emphasis on existing approaches and technologies for the large-scale synthesis and processing and technoeconomic feasibility of MOFs. We also pinpoint the fundamental principles on the metal-ligand reaction mechanism and elaborate on their impact on MOF synthesis and stability. In addition, novel synthesis mechanisms and processing methods and technologies are covered, such as electron-beam radiation method, melt-quench method, sol-gel method, liquid-phase sintering technology, monolithic technology, plasma/laser-assisted technology, etc. In particular, the importance of AI in the design, fabrication and processing of MOFs is highlignted in the current milieu of AI+materials paradigm. We thus aim to provide in-depth insights into the design and development of efficient and versatile synthetic and processing approaches and technologies to promote practical MOF-based applications in addressing the current global energy and environment challenges.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"167 \",\"pages\":\"Article 101123\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25002013\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25002013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent progress in the synthesis, scaling, processing and technoeconomic analysis of metal-organic frameworks towards industrial applications
Economical and efficient synthesis and processing technologies are essential for industrial-level applications of metal-organic frameworks (MOFs). To bridge the gap between lab-scale synthesis and commercial applications, we here provide a comprehensive and holistic review on the challenges of transitioning MOF materials from the laboratory agent to commercial products, and further to industrial-scale applications, with an emphasis on existing approaches and technologies for the large-scale synthesis and processing and technoeconomic feasibility of MOFs. We also pinpoint the fundamental principles on the metal-ligand reaction mechanism and elaborate on their impact on MOF synthesis and stability. In addition, novel synthesis mechanisms and processing methods and technologies are covered, such as electron-beam radiation method, melt-quench method, sol-gel method, liquid-phase sintering technology, monolithic technology, plasma/laser-assisted technology, etc. In particular, the importance of AI in the design, fabrication and processing of MOFs is highlignted in the current milieu of AI+materials paradigm. We thus aim to provide in-depth insights into the design and development of efficient and versatile synthetic and processing approaches and technologies to promote practical MOF-based applications in addressing the current global energy and environment challenges.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.