采用非等摩尔组分设计提高RE2Si2O7耐CMAS腐蚀性能

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Siyu Hu , Xin Zhong , Yiming Wu , Xuemei Song , Du Hong , Liping Huang , Yaran Niu , Xuebin Zheng
{"title":"采用非等摩尔组分设计提高RE2Si2O7耐CMAS腐蚀性能","authors":"Siyu Hu ,&nbsp;Xin Zhong ,&nbsp;Yiming Wu ,&nbsp;Xuemei Song ,&nbsp;Du Hong ,&nbsp;Liping Huang ,&nbsp;Yaran Niu ,&nbsp;Xuebin Zheng","doi":"10.1016/j.corsci.2025.113365","DOIUrl":null,"url":null,"abstract":"<div><div>Rare-earth disilicates (RE<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) environmental barrier coatings (EBCs) face severe degradation from molten calcium-magnesium-aluminosilicate (CMAS) deposits in high-temperature environments. This study proposes a strategy to improve the CMAS corrosion resistance of RE<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> through the design of non-equimolar rare-earth elements. Four kinds of (<em>n</em>RE<sub><em>xi</em></sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> ((Yb<sub>0.8</sub>Er<sub>0.1</sub>Y<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (Yb<sub>0.8</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (Yb<sub>0.7</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>Y<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (Yb<sub>0.7</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>Ho<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) were synthesized via solid-state reactions and subjected to CMAS corrosion at 1400 ℃ for 4 and 25 h. All compositions retained the thermodynamically stable β-phase up to 1600 ℃. The CMAS corrosion results indicated that compared to Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, the multi-rare-earth composition design significantly improves the formation of apatite products, and the continuous product layer is an effective barrier against CMAS penetration. The corrosion resistance against CMAS was significantly influenced by both the types of RE<sup>3 +</sup> cations and their stoichiometric proportions in (<em>n</em>RE<sub><em>xi</em></sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. After corrosion for 25 h, (Yb<sub>0.8</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> demonstrated exceptional performance, forming a dense, continuous apatite layer that suppressed CMAS infiltration. The corrosion mechanism involved RE<sup>3+</sup> dissolution, apatite precipitation, and Ca/Si ratio evolution. The non- equimolar multiple rare-earth doping enhanced lattice stability and reduced distortion optimizing the thermodynamic-kinetic balance, providing an effective method for modulating the corrosion properties of rare-earth silicates used as EBCs.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113365"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving CMAS corrosion resistance of RE2Si2O7 by non-equimolar component design\",\"authors\":\"Siyu Hu ,&nbsp;Xin Zhong ,&nbsp;Yiming Wu ,&nbsp;Xuemei Song ,&nbsp;Du Hong ,&nbsp;Liping Huang ,&nbsp;Yaran Niu ,&nbsp;Xuebin Zheng\",\"doi\":\"10.1016/j.corsci.2025.113365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rare-earth disilicates (RE<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) environmental barrier coatings (EBCs) face severe degradation from molten calcium-magnesium-aluminosilicate (CMAS) deposits in high-temperature environments. This study proposes a strategy to improve the CMAS corrosion resistance of RE<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> through the design of non-equimolar rare-earth elements. Four kinds of (<em>n</em>RE<sub><em>xi</em></sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> ((Yb<sub>0.8</sub>Er<sub>0.1</sub>Y<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (Yb<sub>0.8</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (Yb<sub>0.7</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>Y<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (Yb<sub>0.7</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>Ho<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) were synthesized via solid-state reactions and subjected to CMAS corrosion at 1400 ℃ for 4 and 25 h. All compositions retained the thermodynamically stable β-phase up to 1600 ℃. The CMAS corrosion results indicated that compared to Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, the multi-rare-earth composition design significantly improves the formation of apatite products, and the continuous product layer is an effective barrier against CMAS penetration. The corrosion resistance against CMAS was significantly influenced by both the types of RE<sup>3 +</sup> cations and their stoichiometric proportions in (<em>n</em>RE<sub><em>xi</em></sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. After corrosion for 25 h, (Yb<sub>0.8</sub>Er<sub>0.1</sub>Tm<sub>0.1</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> demonstrated exceptional performance, forming a dense, continuous apatite layer that suppressed CMAS infiltration. The corrosion mechanism involved RE<sup>3+</sup> dissolution, apatite precipitation, and Ca/Si ratio evolution. The non- equimolar multiple rare-earth doping enhanced lattice stability and reduced distortion optimizing the thermodynamic-kinetic balance, providing an effective method for modulating the corrosion properties of rare-earth silicates used as EBCs.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113365\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006936\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006936","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

稀土硅酸盐(RE2Si2O7)环境屏障涂层(ebc)在高温环境下面临着钙镁铝硅酸盐(CMAS)熔融沉积的严重降解。本研究提出了一种通过设计非等摩尔稀土元素来提高RE2Si2O7耐CMAS腐蚀性能的策略。通过固相反应合成了四种(nRExi)2Si2O7 ((Yb0.8Er0.1Y0.1)2Si2O7, (Yb0.8Er0.1Tm0.1)2Si2O7, (Yb0.7Er0.1Tm0.1Y0.1)2Si2O7, (Yb0.7Er0.1Tm0.1Ho0.1)2Si2O7),并在1400℃下进行了4和25 h的CMAS腐蚀。所有组分在1600℃以下均保持热稳定的β相。CMAS腐蚀结果表明,与Yb2Si2O7相比,多稀土成分设计显著促进了磷灰石产物的形成,连续的产物层是阻挡CMAS渗透的有效屏障。RE3 +阳离子的种类及其在(nRExi)2Si2O7中的化学计量比例对CMAS的耐蚀性均有显著影响。腐蚀25 h后,(Yb0.8Er0.1Tm0.1)2Si2O7表现出优异的性能,形成致密、连续的磷灰石层,抑制了CMAS的渗透。腐蚀机制包括RE3+溶解、磷灰石析出和Ca/Si比演变。非等摩尔多重稀土掺杂提高了晶格稳定性,减少了畸变,优化了热力学动力学平衡,为调节稀土硅酸盐的腐蚀性能提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving CMAS corrosion resistance of RE2Si2O7 by non-equimolar component design
Rare-earth disilicates (RE2Si2O7) environmental barrier coatings (EBCs) face severe degradation from molten calcium-magnesium-aluminosilicate (CMAS) deposits in high-temperature environments. This study proposes a strategy to improve the CMAS corrosion resistance of RE2Si2O7 through the design of non-equimolar rare-earth elements. Four kinds of (nRExi)2Si2O7 ((Yb0.8Er0.1Y0.1)2Si2O7, (Yb0.8Er0.1Tm0.1)2Si2O7, (Yb0.7Er0.1Tm0.1Y0.1)2Si2O7, (Yb0.7Er0.1Tm0.1Ho0.1)2Si2O7) were synthesized via solid-state reactions and subjected to CMAS corrosion at 1400 ℃ for 4 and 25 h. All compositions retained the thermodynamically stable β-phase up to 1600 ℃. The CMAS corrosion results indicated that compared to Yb2Si2O7, the multi-rare-earth composition design significantly improves the formation of apatite products, and the continuous product layer is an effective barrier against CMAS penetration. The corrosion resistance against CMAS was significantly influenced by both the types of RE3 + cations and their stoichiometric proportions in (nRExi)2Si2O7. After corrosion for 25 h, (Yb0.8Er0.1Tm0.1)2Si2O7 demonstrated exceptional performance, forming a dense, continuous apatite layer that suppressed CMAS infiltration. The corrosion mechanism involved RE3+ dissolution, apatite precipitation, and Ca/Si ratio evolution. The non- equimolar multiple rare-earth doping enhanced lattice stability and reduced distortion optimizing the thermodynamic-kinetic balance, providing an effective method for modulating the corrosion properties of rare-earth silicates used as EBCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信