局部瑞利指数重建:在不同脉冲重复频率下等离子体辅助顺序燃烧中的应用

IF 5.2 2区 工程技术 Q2 ENERGY & FUELS
Matteo Impagnatiello, Nicolas Noiray
{"title":"局部瑞利指数重建:在不同脉冲重复频率下等离子体辅助顺序燃烧中的应用","authors":"Matteo Impagnatiello,&nbsp;Nicolas Noiray","doi":"10.1016/j.proci.2025.105882","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of Nanosecond Repetitively Pulsed Discharges (NRPDs) on the acoustic response of the second stage of a Constant Pressure Sequential Combustor (CPSC) operating at atmospheric pressure. NRPDs are applied upstream of the second-stage combustion chamber to modify the autoignition process, thereby altering the combustor’s acoustic scattering properties. Large Eddy Simulations (LES) combined with System Identification (SI) methods are employed to better understand the NRPD-flame-acoustic interactions in the sequential flame across three different Plasma Repetition Frequencies (PRF), namely 20, 40, and 60 kHz. Results show that, while NRPDs always improve the overall acoustic scattering properties of the system compared to the combustion without NRPDs, the improvement is non-monotonic with respect to PRF. The most favorable acoustic characteristics are observed at <span><math><mrow><mtext>PRF</mtext><mo>=</mo><mtext>20</mtext></mrow></math></span> kHz. Analysis of local Rayleigh index fields, reconstructed from broadband-forced simulation data, reveals that variations in PRF alter the physical mechanism by which plasma discharges influence system acoustics. Plasma-generated kernels can either directly induce heat release rate fluctuations and act as acoustic energy sources or sinks, or indirectly affect the system’s acoustics by interacting with the main flame brush and modifying its response. The ability to influence the interaction between autoignition kernels and acoustics by simply adjusting the PRF underscores the potential of NRPDs as a versatile tool for controlling the acoustic behavior of sequential combustors, enabling adaptation to the varying operational needs of real gas turbines.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105882"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Rayleigh index reconstruction: Application to plasma-assisted sequential combustion under varying pulse repetition frequency\",\"authors\":\"Matteo Impagnatiello,&nbsp;Nicolas Noiray\",\"doi\":\"10.1016/j.proci.2025.105882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of Nanosecond Repetitively Pulsed Discharges (NRPDs) on the acoustic response of the second stage of a Constant Pressure Sequential Combustor (CPSC) operating at atmospheric pressure. NRPDs are applied upstream of the second-stage combustion chamber to modify the autoignition process, thereby altering the combustor’s acoustic scattering properties. Large Eddy Simulations (LES) combined with System Identification (SI) methods are employed to better understand the NRPD-flame-acoustic interactions in the sequential flame across three different Plasma Repetition Frequencies (PRF), namely 20, 40, and 60 kHz. Results show that, while NRPDs always improve the overall acoustic scattering properties of the system compared to the combustion without NRPDs, the improvement is non-monotonic with respect to PRF. The most favorable acoustic characteristics are observed at <span><math><mrow><mtext>PRF</mtext><mo>=</mo><mtext>20</mtext></mrow></math></span> kHz. Analysis of local Rayleigh index fields, reconstructed from broadband-forced simulation data, reveals that variations in PRF alter the physical mechanism by which plasma discharges influence system acoustics. Plasma-generated kernels can either directly induce heat release rate fluctuations and act as acoustic energy sources or sinks, or indirectly affect the system’s acoustics by interacting with the main flame brush and modifying its response. The ability to influence the interaction between autoignition kernels and acoustics by simply adjusting the PRF underscores the potential of NRPDs as a versatile tool for controlling the acoustic behavior of sequential combustors, enabling adaptation to the varying operational needs of real gas turbines.</div></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"41 \",\"pages\":\"Article 105882\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748925000963\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

研究了纳秒重复脉冲放电(NRPDs)对常压下恒压顺序燃烧器(CPSC)二级声响应的影响。在二级燃烧室上游应用NRPDs来改变自燃过程,从而改变燃烧室的声散射特性。采用大涡模拟(LES)与系统识别(SI)相结合的方法,更好地了解了连续火焰中三种不同等离子体重复频率(PRF)(即20、40和60 kHz)下的nrpd -火焰-声相互作用。结果表明,与无NRPDs的燃烧相比,NRPDs总是改善系统的整体声散射特性,但对于PRF的改善是非单调的。在PRF=20 kHz时观察到最有利的声学特性。利用宽带强迫模拟数据重建的局部瑞利指数场分析表明,PRF的变化改变了等离子体放电影响系统声学的物理机制。等离子体产生的核可以直接引起热释放率波动并作为声能源或汇,也可以通过与主火焰刷相互作用并改变其响应来间接影响系统的声学。通过简单地调整PRF来影响自燃核和声学之间的相互作用的能力强调了NRPDs作为控制顺序燃烧器声学行为的通用工具的潜力,使其能够适应实际燃气轮机的不同操作需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Rayleigh index reconstruction: Application to plasma-assisted sequential combustion under varying pulse repetition frequency
This study investigates the influence of Nanosecond Repetitively Pulsed Discharges (NRPDs) on the acoustic response of the second stage of a Constant Pressure Sequential Combustor (CPSC) operating at atmospheric pressure. NRPDs are applied upstream of the second-stage combustion chamber to modify the autoignition process, thereby altering the combustor’s acoustic scattering properties. Large Eddy Simulations (LES) combined with System Identification (SI) methods are employed to better understand the NRPD-flame-acoustic interactions in the sequential flame across three different Plasma Repetition Frequencies (PRF), namely 20, 40, and 60 kHz. Results show that, while NRPDs always improve the overall acoustic scattering properties of the system compared to the combustion without NRPDs, the improvement is non-monotonic with respect to PRF. The most favorable acoustic characteristics are observed at PRF=20 kHz. Analysis of local Rayleigh index fields, reconstructed from broadband-forced simulation data, reveals that variations in PRF alter the physical mechanism by which plasma discharges influence system acoustics. Plasma-generated kernels can either directly induce heat release rate fluctuations and act as acoustic energy sources or sinks, or indirectly affect the system’s acoustics by interacting with the main flame brush and modifying its response. The ability to influence the interaction between autoignition kernels and acoustics by simply adjusting the PRF underscores the potential of NRPDs as a versatile tool for controlling the acoustic behavior of sequential combustors, enabling adaptation to the varying operational needs of real gas turbines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信