Tarek Ihaddadene, Jérôme Claverie, François Bignonnet, Ouali Amiri
{"title":"氯离子和钠离子在C-S-H凝胶孔隙中的扩散和物理化学行为:分子动力学研究","authors":"Tarek Ihaddadene, Jérôme Claverie, François Bignonnet, Ouali Amiri","doi":"10.1016/j.cemconres.2025.108053","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium silicate hydrate (C-S-H) gel is an amorphous material with a complex, disordered structure that complicates the understanding of its atomic-scale properties. While many studies have investigated ionic diffusion in C-S-H pores, the behavior of sodium ( <figure><img></figure> ) and chloride ( <figure><img></figure> ) ions, particularly in relation to the Ca/Si ratio, is not well understood. In this study, atomistic models of C-S-H were developed with varying Ca/Si ratios, pore sizes, and NaCl concentrations. Molecular dynamics simulations were used to calculate the self-diffusion profiles of <figure><img></figure> and <figure><img></figure> ions. Results indicate that pore size strongly affects diffusivity and adsorption through confinement and electrical double layer effects. The solid surface influences ionic mobility up to approximately 1.2 nm. The Ca/Si ratio has minimal impact on the diffusion profiles of non-adsorbed ions, but its rise enhances <figure><img></figure> mobility near the surface and increases chloride binding capacity, consistent with prior studies.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"199 ","pages":"Article 108053"},"PeriodicalIF":13.1000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion and physicochemical behavior of chloride and sodium ions in C-S-H gel pores : A molecular dynamics investigation\",\"authors\":\"Tarek Ihaddadene, Jérôme Claverie, François Bignonnet, Ouali Amiri\",\"doi\":\"10.1016/j.cemconres.2025.108053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Calcium silicate hydrate (C-S-H) gel is an amorphous material with a complex, disordered structure that complicates the understanding of its atomic-scale properties. While many studies have investigated ionic diffusion in C-S-H pores, the behavior of sodium ( <figure><img></figure> ) and chloride ( <figure><img></figure> ) ions, particularly in relation to the Ca/Si ratio, is not well understood. In this study, atomistic models of C-S-H were developed with varying Ca/Si ratios, pore sizes, and NaCl concentrations. Molecular dynamics simulations were used to calculate the self-diffusion profiles of <figure><img></figure> and <figure><img></figure> ions. Results indicate that pore size strongly affects diffusivity and adsorption through confinement and electrical double layer effects. The solid surface influences ionic mobility up to approximately 1.2 nm. The Ca/Si ratio has minimal impact on the diffusion profiles of non-adsorbed ions, but its rise enhances <figure><img></figure> mobility near the surface and increases chloride binding capacity, consistent with prior studies.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"199 \",\"pages\":\"Article 108053\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625002728\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625002728","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Diffusion and physicochemical behavior of chloride and sodium ions in C-S-H gel pores : A molecular dynamics investigation
Calcium silicate hydrate (C-S-H) gel is an amorphous material with a complex, disordered structure that complicates the understanding of its atomic-scale properties. While many studies have investigated ionic diffusion in C-S-H pores, the behavior of sodium ( ) and chloride ( ) ions, particularly in relation to the Ca/Si ratio, is not well understood. In this study, atomistic models of C-S-H were developed with varying Ca/Si ratios, pore sizes, and NaCl concentrations. Molecular dynamics simulations were used to calculate the self-diffusion profiles of and ions. Results indicate that pore size strongly affects diffusivity and adsorption through confinement and electrical double layer effects. The solid surface influences ionic mobility up to approximately 1.2 nm. The Ca/Si ratio has minimal impact on the diffusion profiles of non-adsorbed ions, but its rise enhances mobility near the surface and increases chloride binding capacity, consistent with prior studies.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.