功能碳基微纤维作为双功能氧电催化剂

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yulu Jing, Junyuan Zhang, Jingjing Chen, Xiaolong Xu, Changyu Liu, Jianbo Jia
{"title":"功能碳基微纤维作为双功能氧电催化剂","authors":"Yulu Jing, Junyuan Zhang, Jingjing Chen, Xiaolong Xu, Changyu Liu, Jianbo Jia","doi":"10.1016/j.jallcom.2025.184175","DOIUrl":null,"url":null,"abstract":"There is an urgent need for efficient, low-cost, and durable electrocatalysts to drive the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in advanced energy technologies. Herein, we report a Fe, Co, S, and N co-doped carbon microfibers catalyst (denoted as PAN–Fe/Co–1/15S) synthesized through electrospinning of a polyacrylonitrile-based precursor incorporating MIL-100(Fe) and cobalt nitrate, followed by controlled pyrolysis with thiourea. The resulting catalyst exhibits exceptional bifunctional activity, achieving a half-wave potential of 0.89<!-- --> <!-- -->V for ORR and an overpotential of only 320<!-- --> <!-- -->mV at 10<!-- --> <!-- -->mA<!-- --> <!-- -->cm⁻² for OER in alkaline medium, surpassing the performance of benchmark Pt/C and RuO₂. The unique microfiber architecture ensures a high specific surface area and homogeneous dispersion of active sites, as confirmed by electron microscopy and elemental mapping. Combined experimental and theoretical analyses reveal that the synergistic interplay between FeS<sub>2</sub>N<sub>2</sub> and CoN₄ configurations optimizes the adsorption of oxygen intermediates, thereby accelerating reaction kinetics. When applied in a zinc–air battery, the catalyst enables a high power density of 139.6<!-- --> <!-- -->mW<!-- --> <!-- -->cm⁻². This work provides a scalable strategy for designing multifunctional electrocatalysts for renewable energy applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"78 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional carbon-based microfibers as bifunctional oxygen electrocatalyst\",\"authors\":\"Yulu Jing, Junyuan Zhang, Jingjing Chen, Xiaolong Xu, Changyu Liu, Jianbo Jia\",\"doi\":\"10.1016/j.jallcom.2025.184175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an urgent need for efficient, low-cost, and durable electrocatalysts to drive the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in advanced energy technologies. Herein, we report a Fe, Co, S, and N co-doped carbon microfibers catalyst (denoted as PAN–Fe/Co–1/15S) synthesized through electrospinning of a polyacrylonitrile-based precursor incorporating MIL-100(Fe) and cobalt nitrate, followed by controlled pyrolysis with thiourea. The resulting catalyst exhibits exceptional bifunctional activity, achieving a half-wave potential of 0.89<!-- --> <!-- -->V for ORR and an overpotential of only 320<!-- --> <!-- -->mV at 10<!-- --> <!-- -->mA<!-- --> <!-- -->cm⁻² for OER in alkaline medium, surpassing the performance of benchmark Pt/C and RuO₂. The unique microfiber architecture ensures a high specific surface area and homogeneous dispersion of active sites, as confirmed by electron microscopy and elemental mapping. Combined experimental and theoretical analyses reveal that the synergistic interplay between FeS<sub>2</sub>N<sub>2</sub> and CoN₄ configurations optimizes the adsorption of oxygen intermediates, thereby accelerating reaction kinetics. When applied in a zinc–air battery, the catalyst enables a high power density of 139.6<!-- --> <!-- -->mW<!-- --> <!-- -->cm⁻². This work provides a scalable strategy for designing multifunctional electrocatalysts for renewable energy applications.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.184175\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184175","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在先进能源技术中,迫切需要高效、低成本、耐用的电催化剂来驱动氧还原反应(ORR)和析氧反应(OER)。本文报道了一种Fe、Co、S和N共掺杂碳微纤维催化剂(PAN-Fe /Co -1 / 15s),该催化剂是通过静电纺丝将MIL-100(Fe)和硝酸钴作为聚丙烯腈基前驱体,然后与硫脲控制热解合成的。所得到的催化剂表现出优异的双功能活性,在碱性介质中,ORR的半波电位为0.89 V, OER在10 mA cm⁻²时的过电位仅为320 mV,超过了基准Pt/C和RuO₂的性能。独特的超细纤维结构确保了高比表面积和均匀分散的活性位点,正如电子显微镜和元素映射所证实的那样。实验和理论分析表明,FeS2N2和CoN₄构型之间的协同作用优化了氧中间体的吸附,从而加快了反应动力学。当应用于锌空气电池时,催化剂可以实现139.6 mW cm⁻²的高功率密度。这项工作为设计可再生能源应用的多功能电催化剂提供了一种可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional carbon-based microfibers as bifunctional oxygen electrocatalyst
There is an urgent need for efficient, low-cost, and durable electrocatalysts to drive the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in advanced energy technologies. Herein, we report a Fe, Co, S, and N co-doped carbon microfibers catalyst (denoted as PAN–Fe/Co–1/15S) synthesized through electrospinning of a polyacrylonitrile-based precursor incorporating MIL-100(Fe) and cobalt nitrate, followed by controlled pyrolysis with thiourea. The resulting catalyst exhibits exceptional bifunctional activity, achieving a half-wave potential of 0.89 V for ORR and an overpotential of only 320 mV at 10 mA cm⁻² for OER in alkaline medium, surpassing the performance of benchmark Pt/C and RuO₂. The unique microfiber architecture ensures a high specific surface area and homogeneous dispersion of active sites, as confirmed by electron microscopy and elemental mapping. Combined experimental and theoretical analyses reveal that the synergistic interplay between FeS2N2 and CoN₄ configurations optimizes the adsorption of oxygen intermediates, thereby accelerating reaction kinetics. When applied in a zinc–air battery, the catalyst enables a high power density of 139.6 mW cm⁻². This work provides a scalable strategy for designing multifunctional electrocatalysts for renewable energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信