Chuanzhen Shang, Duo Qu, Zheng Bao, Chenyun Wang, Qiangqiang Zhao, Chunsheng Li, Bin Zhou, Xuemeng Wang, Ruilin Han, Shasha Wang, Wenying Zhao, Kai Wang, Jiangang Liu, Xiaoyu Yang, Zhang Lan, Jiang Wu, Weidong Xu, Jihuai Wu, Rui Zhu, Yongguang Tu
{"title":"原位NH3生成降低低厄巴赫能高效钙钛矿太阳能电池的能量紊乱","authors":"Chuanzhen Shang, Duo Qu, Zheng Bao, Chenyun Wang, Qiangqiang Zhao, Chunsheng Li, Bin Zhou, Xuemeng Wang, Ruilin Han, Shasha Wang, Wenying Zhao, Kai Wang, Jiangang Liu, Xiaoyu Yang, Zhang Lan, Jiang Wu, Weidong Xu, Jihuai Wu, Rui Zhu, Yongguang Tu","doi":"10.1002/anie.202516464","DOIUrl":null,"url":null,"abstract":"The high disorder in perovskite materials leads to severe carrier non‐radiative recombination, which directly determines the energy loss of photovoltaic devices. Currently, modulation of energetic disorder in perovskite solar cells and its correlation with open‐circuit voltage losses (V<jats:sub>OC, loss</jats:sub>) remain insufficiently understood. We regulated the perovskite crystallization process by in situ NH<jats:sub>3</jats:sub> generation, thereby enhancing the perovskite degree of energetic order. Density functional theory calculations reveal that lone‐pair electrons on the N atom of the NH<jats:sub>3</jats:sub> molecule coordinate with Pb<jats:sup>2+</jats:sup>, increasing the defect formation energy of lead vacancies (V<jats:sub>Pb</jats:sub>), Pb‐on‐I antisite (Pb<jats:sub>I</jats:sub>), and I‐on‐Pb antisite (I<jats:sub>Pb</jats:sub>) to 5.61, 0.37, and 4.09 eV, respectively. As a result, we obtained energetic ordered perovskite film with an Urbach energy of 23.7 meV. The champion device exhibited a reduced V<jats:sub>OC, loss</jats:sub> by over than 50 mV and achieved an open‐circuit voltage (V<jats:sub>OC</jats:sub>) of 1.182 V with a power conversion efficiency (PCE) of 26.26%. Under the ISOS‐D protocols, the device maintains over 95% of its initial efficiency after 1100 h of nitrogen storage and over 90% after 700 h at 65 °C. And the 5 × 5 cm<jats:sup>2</jats:sup> mini‐modules achieved a PCE of 21.31%, representing state‐of‐the‐art performance in perovskite photovoltaics.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"99 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Energetic Disorder for High‐Efficiency Perovskite Solar Cells with Low Urbach Energy by in Situ NH3 Generation\",\"authors\":\"Chuanzhen Shang, Duo Qu, Zheng Bao, Chenyun Wang, Qiangqiang Zhao, Chunsheng Li, Bin Zhou, Xuemeng Wang, Ruilin Han, Shasha Wang, Wenying Zhao, Kai Wang, Jiangang Liu, Xiaoyu Yang, Zhang Lan, Jiang Wu, Weidong Xu, Jihuai Wu, Rui Zhu, Yongguang Tu\",\"doi\":\"10.1002/anie.202516464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high disorder in perovskite materials leads to severe carrier non‐radiative recombination, which directly determines the energy loss of photovoltaic devices. Currently, modulation of energetic disorder in perovskite solar cells and its correlation with open‐circuit voltage losses (V<jats:sub>OC, loss</jats:sub>) remain insufficiently understood. We regulated the perovskite crystallization process by in situ NH<jats:sub>3</jats:sub> generation, thereby enhancing the perovskite degree of energetic order. Density functional theory calculations reveal that lone‐pair electrons on the N atom of the NH<jats:sub>3</jats:sub> molecule coordinate with Pb<jats:sup>2+</jats:sup>, increasing the defect formation energy of lead vacancies (V<jats:sub>Pb</jats:sub>), Pb‐on‐I antisite (Pb<jats:sub>I</jats:sub>), and I‐on‐Pb antisite (I<jats:sub>Pb</jats:sub>) to 5.61, 0.37, and 4.09 eV, respectively. As a result, we obtained energetic ordered perovskite film with an Urbach energy of 23.7 meV. The champion device exhibited a reduced V<jats:sub>OC, loss</jats:sub> by over than 50 mV and achieved an open‐circuit voltage (V<jats:sub>OC</jats:sub>) of 1.182 V with a power conversion efficiency (PCE) of 26.26%. Under the ISOS‐D protocols, the device maintains over 95% of its initial efficiency after 1100 h of nitrogen storage and over 90% after 700 h at 65 °C. And the 5 × 5 cm<jats:sup>2</jats:sup> mini‐modules achieved a PCE of 21.31%, representing state‐of‐the‐art performance in perovskite photovoltaics.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202516464\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202516464","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
钙钛矿材料的高度无序性导致严重的载流子非辐射复合,直接决定了光伏器件的能量损失。目前,钙钛矿太阳能电池中能量紊乱的调节及其与开路电压损耗(VOC,损耗)的相关性仍未得到充分的了解。我们通过原位生成NH3调控钙钛矿结晶过程,从而提高钙钛矿的能态有序度。密度泛函数理论计算表明,NH3分子N原子上的孤对电子与Pb2+配位,使铅空位(VPb)、Pb - on - I反位(PbI)和I - on - Pb反位(IPb)的缺陷形成能分别提高到5.61、0.37和4.09 eV。得到了厄巴赫能为23.7 meV的有序钙钛矿膜。冠军器件的VOC损耗降低了50 mV以上,开路电压(VOC)为1.182 V,功率转换效率(PCE)为26.26%。根据iso - D协议,该装置在氮气储存1100小时后保持95%以上的初始效率,在65°C下储存700小时后保持90%以上的初始效率。5 × 5 cm2的微型组件实现了21.31%的PCE,代表了钙钛矿光伏电池的最先进性能。
Reducing Energetic Disorder for High‐Efficiency Perovskite Solar Cells with Low Urbach Energy by in Situ NH3 Generation
The high disorder in perovskite materials leads to severe carrier non‐radiative recombination, which directly determines the energy loss of photovoltaic devices. Currently, modulation of energetic disorder in perovskite solar cells and its correlation with open‐circuit voltage losses (VOC, loss) remain insufficiently understood. We regulated the perovskite crystallization process by in situ NH3 generation, thereby enhancing the perovskite degree of energetic order. Density functional theory calculations reveal that lone‐pair electrons on the N atom of the NH3 molecule coordinate with Pb2+, increasing the defect formation energy of lead vacancies (VPb), Pb‐on‐I antisite (PbI), and I‐on‐Pb antisite (IPb) to 5.61, 0.37, and 4.09 eV, respectively. As a result, we obtained energetic ordered perovskite film with an Urbach energy of 23.7 meV. The champion device exhibited a reduced VOC, loss by over than 50 mV and achieved an open‐circuit voltage (VOC) of 1.182 V with a power conversion efficiency (PCE) of 26.26%. Under the ISOS‐D protocols, the device maintains over 95% of its initial efficiency after 1100 h of nitrogen storage and over 90% after 700 h at 65 °C. And the 5 × 5 cm2 mini‐modules achieved a PCE of 21.31%, representing state‐of‐the‐art performance in perovskite photovoltaics.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.