利用紧凑型激光驱动电子加速器的超热中子共振光谱的原理验证演示

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jie Feng, Jie Ren, Hao Xu, Mingyang Zhu, Bingzhan Shi, Guoqiang Zhang, Jie Bao, Wenchao Yan, Yifei Li, Jinguang Wang, Xin Lu, Liming Chen, Jie Zhang
{"title":"利用紧凑型激光驱动电子加速器的超热中子共振光谱的原理验证演示","authors":"Jie Feng, Jie Ren, Hao Xu, Mingyang Zhu, Bingzhan Shi, Guoqiang Zhang, Jie Bao, Wenchao Yan, Yifei Li, Jinguang Wang, Xin Lu, Liming Chen, Jie Zhang","doi":"10.1073/pnas.2518397122","DOIUrl":null,"url":null,"abstract":"Epithermal neutron resonance spectroscopy is a key nondestructive approach for discerning material properties. However, the existing spallation and accelerator-based photonuclear neutron sources employed in this spectroscopy are huge and immobile, restricting their application in specialized scenarios. Here, we demonstrate a compact short-pulsed photonuclear neutron source driven by a terawatt femtosecond laser–based electron accelerator. After moderation, this neutron source maintains an outstanding time-resolution of 0.8 <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">μ</mml:mi> </mml:math> </jats:inline-formula> s at 5 eV, and its energy resolution can be less than 3% at a flight distance 1.72 m. When this compact neutron resonance spectroscopy facility is utilized to examine silver (Ag) and indium (In) metal sheets with a high signal-to-noise ratio, it distinctly reveals the shape of resonance absorption peaks for <jats:sup>115</jats:sup> In at 1.46 eV and <jats:sup>109</jats:sup> Ag at 5.19 eV. This laser-driven electron accelerator offers a solution, overcoming traditional source drawbacks and holding great potential for on-site nuclear material analysis and high-precision nuclear data acquisition.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"7 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof-of-principle demonstration of epithermal neutron resonance spectroscopy utilizing a compact laser–driven electron accelerator\",\"authors\":\"Jie Feng, Jie Ren, Hao Xu, Mingyang Zhu, Bingzhan Shi, Guoqiang Zhang, Jie Bao, Wenchao Yan, Yifei Li, Jinguang Wang, Xin Lu, Liming Chen, Jie Zhang\",\"doi\":\"10.1073/pnas.2518397122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epithermal neutron resonance spectroscopy is a key nondestructive approach for discerning material properties. However, the existing spallation and accelerator-based photonuclear neutron sources employed in this spectroscopy are huge and immobile, restricting their application in specialized scenarios. Here, we demonstrate a compact short-pulsed photonuclear neutron source driven by a terawatt femtosecond laser–based electron accelerator. After moderation, this neutron source maintains an outstanding time-resolution of 0.8 <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi mathvariant=\\\"normal\\\">μ</mml:mi> </mml:math> </jats:inline-formula> s at 5 eV, and its energy resolution can be less than 3% at a flight distance 1.72 m. When this compact neutron resonance spectroscopy facility is utilized to examine silver (Ag) and indium (In) metal sheets with a high signal-to-noise ratio, it distinctly reveals the shape of resonance absorption peaks for <jats:sup>115</jats:sup> In at 1.46 eV and <jats:sup>109</jats:sup> Ag at 5.19 eV. This laser-driven electron accelerator offers a solution, overcoming traditional source drawbacks and holding great potential for on-site nuclear material analysis and high-precision nuclear data acquisition.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2518397122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2518397122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

超热中子共振光谱是识别材料性能的一种关键的非破坏性方法。然而,目前用于该光谱学的散裂和基于加速器的光子核中子源体积庞大且不可移动,限制了它们在特定场合的应用。在这里,我们展示了一个紧凑的短脉冲光子核中子源由一个太瓦飞秒激光电子加速器驱动。经过适度调节后,该中子源在5ev时的时间分辨率为0.8 μ s,在1.72 m的飞行距离上的能量分辨率小于3%。当使用这种紧凑的中子共振光谱设备检测具有高信噪比的银(Ag)和铟(In)金属薄片时,它清楚地显示了1.46 eV下115 In和5.19 eV下109 Ag的共振吸收峰形状。这种激光驱动的电子加速器提供了一种解决方案,克服了传统源的缺点,在现场核材料分析和高精度核数据采集方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof-of-principle demonstration of epithermal neutron resonance spectroscopy utilizing a compact laser–driven electron accelerator
Epithermal neutron resonance spectroscopy is a key nondestructive approach for discerning material properties. However, the existing spallation and accelerator-based photonuclear neutron sources employed in this spectroscopy are huge and immobile, restricting their application in specialized scenarios. Here, we demonstrate a compact short-pulsed photonuclear neutron source driven by a terawatt femtosecond laser–based electron accelerator. After moderation, this neutron source maintains an outstanding time-resolution of 0.8 μ s at 5 eV, and its energy resolution can be less than 3% at a flight distance 1.72 m. When this compact neutron resonance spectroscopy facility is utilized to examine silver (Ag) and indium (In) metal sheets with a high signal-to-noise ratio, it distinctly reveals the shape of resonance absorption peaks for 115 In at 1.46 eV and 109 Ag at 5.19 eV. This laser-driven electron accelerator offers a solution, overcoming traditional source drawbacks and holding great potential for on-site nuclear material analysis and high-precision nuclear data acquisition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信