{"title":"锂基全固态电池界面化学驱动的反应动力学及其微观结构演变。","authors":"Chanhyun Park,Jingyu Choi,Seojoung Park,Hyeong-Jong Kim,Yunseo Kim,Gukhyun Lim,Juho Lee,Eunryeol Lee,Sugeun Jo,Jiwon Kim,Jinsoo Kim,Jun Lim,Taeseok Kim,Jihyun Hong,Donghyuk Kim,Sung-Kyun Jung","doi":"10.1038/s41467-025-63959-1","DOIUrl":null,"url":null,"abstract":"Achieving a comprehensive understanding of battery systems necessitates multi-length scale analysis, from the atomic- to macro-scale, to grasp the complex interplay of phenomena influencing performance. However, studies to understand these phenomena in all-solid-state batteries (ASSBs) poses significant challenges due to the complex microstructural evolution involved, including the pore formation and contact loss resulting from cathode material breathing, chemical degradation at interfaces, and their interplay. Herein, we investigate the impact of chemical degradation on the reaction behavior and microstructural evolution of Ni-rich cathode particle (LiNi0.6Co0.2Mn0.2O2) within composite cathodes of sulfide-based ASSBs, using a well-defined model system incorporating Li-In alloy anodes and a non-decomposable coating layer that solely alters the interfacial chemical reactivity. By using lithium difluorophosphate (LiDFP) to suppress chemical degradation, we observed that this suppression enhances the reaction uniformity among particles and homogenizes mechanical degradation, albeit increasing pore formation and tortuosity. In addition, unbridled chemical degradation induces significant reaction heterogeneity and non-uniform mechanical degradation, with fewer pores and lower tortuosity. These findings complement the understanding of mechanical degradation, which is traditionally described using the metrics of contact loss and tortuosity, and underscore the critical role of coating layers in promoting lithium conduction by maintaining contact with the cathode surface.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"42 1","pages":"8838"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial chemistry-driven reaction dynamics and resultant microstructural evolution in lithium-based all-solid-state batteries.\",\"authors\":\"Chanhyun Park,Jingyu Choi,Seojoung Park,Hyeong-Jong Kim,Yunseo Kim,Gukhyun Lim,Juho Lee,Eunryeol Lee,Sugeun Jo,Jiwon Kim,Jinsoo Kim,Jun Lim,Taeseok Kim,Jihyun Hong,Donghyuk Kim,Sung-Kyun Jung\",\"doi\":\"10.1038/s41467-025-63959-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving a comprehensive understanding of battery systems necessitates multi-length scale analysis, from the atomic- to macro-scale, to grasp the complex interplay of phenomena influencing performance. However, studies to understand these phenomena in all-solid-state batteries (ASSBs) poses significant challenges due to the complex microstructural evolution involved, including the pore formation and contact loss resulting from cathode material breathing, chemical degradation at interfaces, and their interplay. Herein, we investigate the impact of chemical degradation on the reaction behavior and microstructural evolution of Ni-rich cathode particle (LiNi0.6Co0.2Mn0.2O2) within composite cathodes of sulfide-based ASSBs, using a well-defined model system incorporating Li-In alloy anodes and a non-decomposable coating layer that solely alters the interfacial chemical reactivity. By using lithium difluorophosphate (LiDFP) to suppress chemical degradation, we observed that this suppression enhances the reaction uniformity among particles and homogenizes mechanical degradation, albeit increasing pore formation and tortuosity. In addition, unbridled chemical degradation induces significant reaction heterogeneity and non-uniform mechanical degradation, with fewer pores and lower tortuosity. These findings complement the understanding of mechanical degradation, which is traditionally described using the metrics of contact loss and tortuosity, and underscore the critical role of coating layers in promoting lithium conduction by maintaining contact with the cathode surface.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"42 1\",\"pages\":\"8838\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63959-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63959-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Interfacial chemistry-driven reaction dynamics and resultant microstructural evolution in lithium-based all-solid-state batteries.
Achieving a comprehensive understanding of battery systems necessitates multi-length scale analysis, from the atomic- to macro-scale, to grasp the complex interplay of phenomena influencing performance. However, studies to understand these phenomena in all-solid-state batteries (ASSBs) poses significant challenges due to the complex microstructural evolution involved, including the pore formation and contact loss resulting from cathode material breathing, chemical degradation at interfaces, and their interplay. Herein, we investigate the impact of chemical degradation on the reaction behavior and microstructural evolution of Ni-rich cathode particle (LiNi0.6Co0.2Mn0.2O2) within composite cathodes of sulfide-based ASSBs, using a well-defined model system incorporating Li-In alloy anodes and a non-decomposable coating layer that solely alters the interfacial chemical reactivity. By using lithium difluorophosphate (LiDFP) to suppress chemical degradation, we observed that this suppression enhances the reaction uniformity among particles and homogenizes mechanical degradation, albeit increasing pore formation and tortuosity. In addition, unbridled chemical degradation induces significant reaction heterogeneity and non-uniform mechanical degradation, with fewer pores and lower tortuosity. These findings complement the understanding of mechanical degradation, which is traditionally described using the metrics of contact loss and tortuosity, and underscore the critical role of coating layers in promoting lithium conduction by maintaining contact with the cathode surface.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.