{"title":"一种用于癌症治疗的长期自驱动节律光动力系统。","authors":"Weili Wang,Binglin Ye,Yao Liu,Zhi Li,Qianying Huang,Jialin Zhou,Min Hu,Jun Jiang,Weilin Wang,Zhengwei Mao,Yuan Ding","doi":"10.1038/s41467-025-63868-3","DOIUrl":null,"url":null,"abstract":"Metronomic photodynamic therapy is a long-term, low-dose treatment strategy that employs optical devices with continuous photosensitizer administration and requires stable device attachment with a consistent power source. These factors significantly limit patient mobility. Currently, no metronomic photodynamic therapy modality can operate independent of external devices, underscoring the critical need for in vivo light sources that function without external energy inputs. In this study, we integrate self-luminous bacteria with a photosensitizer in alginate microcapsules to create a self-driven metronomic photodynamic therapy that can be securely implanted within a tumour, thereby enabling continuous light emission without requiring an external energy source or ongoing replenishment of photosensitive reactants. By harnessing nutrients from the tumour microenvironment, this system sustains the generation of reactive oxygen species. A single injection effectively eliminates larger tumours (>300 mm3) in an opaque melanoma mouse model and transplanted hepatocarcinoma rabbit model. Self-driven metronomic photodynamic therapy demonstrates advantages over traditional photodynamic therapy, indicating its potential as a versatile therapeutic approach for cancer treatment with deeply situated lesions.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"97 1","pages":"8823"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A long-term self-driven metronomic photodynamic system for cancer therapy.\",\"authors\":\"Weili Wang,Binglin Ye,Yao Liu,Zhi Li,Qianying Huang,Jialin Zhou,Min Hu,Jun Jiang,Weilin Wang,Zhengwei Mao,Yuan Ding\",\"doi\":\"10.1038/s41467-025-63868-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metronomic photodynamic therapy is a long-term, low-dose treatment strategy that employs optical devices with continuous photosensitizer administration and requires stable device attachment with a consistent power source. These factors significantly limit patient mobility. Currently, no metronomic photodynamic therapy modality can operate independent of external devices, underscoring the critical need for in vivo light sources that function without external energy inputs. In this study, we integrate self-luminous bacteria with a photosensitizer in alginate microcapsules to create a self-driven metronomic photodynamic therapy that can be securely implanted within a tumour, thereby enabling continuous light emission without requiring an external energy source or ongoing replenishment of photosensitive reactants. By harnessing nutrients from the tumour microenvironment, this system sustains the generation of reactive oxygen species. A single injection effectively eliminates larger tumours (>300 mm3) in an opaque melanoma mouse model and transplanted hepatocarcinoma rabbit model. Self-driven metronomic photodynamic therapy demonstrates advantages over traditional photodynamic therapy, indicating its potential as a versatile therapeutic approach for cancer treatment with deeply situated lesions.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"97 1\",\"pages\":\"8823\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63868-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63868-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A long-term self-driven metronomic photodynamic system for cancer therapy.
Metronomic photodynamic therapy is a long-term, low-dose treatment strategy that employs optical devices with continuous photosensitizer administration and requires stable device attachment with a consistent power source. These factors significantly limit patient mobility. Currently, no metronomic photodynamic therapy modality can operate independent of external devices, underscoring the critical need for in vivo light sources that function without external energy inputs. In this study, we integrate self-luminous bacteria with a photosensitizer in alginate microcapsules to create a self-driven metronomic photodynamic therapy that can be securely implanted within a tumour, thereby enabling continuous light emission without requiring an external energy source or ongoing replenishment of photosensitive reactants. By harnessing nutrients from the tumour microenvironment, this system sustains the generation of reactive oxygen species. A single injection effectively eliminates larger tumours (>300 mm3) in an opaque melanoma mouse model and transplanted hepatocarcinoma rabbit model. Self-driven metronomic photodynamic therapy demonstrates advantages over traditional photodynamic therapy, indicating its potential as a versatile therapeutic approach for cancer treatment with deeply situated lesions.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.