Niclas Heinsdorf, Darshan G. Joshi, Hosho Katsura, Andreas P. Schnyder
{"title":"多体相互作用下玻色子拓扑边缘模式的命运","authors":"Niclas Heinsdorf, Darshan G. Joshi, Hosho Katsura, Andreas P. Schnyder","doi":"10.1103/1pty-fvpf","DOIUrl":null,"url":null,"abstract":"Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon, or other quasiparticle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the noninteracting quasiparticle picture are most often identified as the reason for the absence of the topological edge modes. Here we report persistent bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. We use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that signatures of these edge modes survive even when the noninteracting quasiparticle theory breaks down; we discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"1 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fate of Bosonic Topological Edge Modes in the Presence of Many-Body Interactions\",\"authors\":\"Niclas Heinsdorf, Darshan G. Joshi, Hosho Katsura, Andreas P. Schnyder\",\"doi\":\"10.1103/1pty-fvpf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon, or other quasiparticle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the noninteracting quasiparticle picture are most often identified as the reason for the absence of the topological edge modes. Here we report persistent bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. We use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that signatures of these edge modes survive even when the noninteracting quasiparticle theory breaks down; we discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/1pty-fvpf\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/1pty-fvpf","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fate of Bosonic Topological Edge Modes in the Presence of Many-Body Interactions
Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon, or other quasiparticle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the noninteracting quasiparticle picture are most often identified as the reason for the absence of the topological edge modes. Here we report persistent bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. We use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that signatures of these edge modes survive even when the noninteracting quasiparticle theory breaks down; we discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks