零间隙电解槽中高电流CO2电解制甲烷用缺陷铜催化剂的电化学组装

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qin Yang, Xiu Wang, Yuqi Yang, Ziyu Mi, Lei Wang, Yu‐Jhih Shen, Kang‐Shun Peng, Mingsheng Zhang, Tanmay Ghosh, Ruoou Yang, Linrong Huang, Jiguang Zhang, Zainul Aabdin, Wan Ru Leow, Sung‐Fu Hung, Ziyun Wang, Yanwei Lum
{"title":"零间隙电解槽中高电流CO2电解制甲烷用缺陷铜催化剂的电化学组装","authors":"Qin Yang, Xiu Wang, Yuqi Yang, Ziyu Mi, Lei Wang, Yu‐Jhih Shen, Kang‐Shun Peng, Mingsheng Zhang, Tanmay Ghosh, Ruoou Yang, Linrong Huang, Jiguang Zhang, Zainul Aabdin, Wan Ru Leow, Sung‐Fu Hung, Ziyun Wang, Yanwei Lum","doi":"10.1002/anie.202515396","DOIUrl":null,"url":null,"abstract":"CO<jats:sub>2</jats:sub> electrolysis to methane offers a promising route toward enabling long‐term storage of renewable energy. However, electrolysis in zero‐gap membrane electrode assembly (MEA) systems using conventional Cu‐based electrocatalysts is typically limited by relatively low methane productivity and Faradaic efficiency (FE). Here, we conceived an electrochemical assembly strategy that forms a Cu(111)‐dominant catalyst with vacancy defects. In an MEA system at a total current of 1.5 A, the catalyst (Def‐Cu<jats:sub>6</jats:sub>) achieved a record methane FE of 71.46% and production rate of 0.28 µmol s<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>, with relatively stable operation over 10 h. Density functional theory calculations reveal the crucial role of vacancy defects in a Cu(111) surface, which favors the hydrogenation of CO* and promotes methane formation over the competing CO* coupling pathway that leads to multicarbon products. Our findings demonstrate how vacancy defects can be tuned to control catalytic outcomes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"97 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Assembly of a Defective Cu Catalyst for High Current CO2 Electrolysis to Methane in a Zero‐Gap Electrolyzer\",\"authors\":\"Qin Yang, Xiu Wang, Yuqi Yang, Ziyu Mi, Lei Wang, Yu‐Jhih Shen, Kang‐Shun Peng, Mingsheng Zhang, Tanmay Ghosh, Ruoou Yang, Linrong Huang, Jiguang Zhang, Zainul Aabdin, Wan Ru Leow, Sung‐Fu Hung, Ziyun Wang, Yanwei Lum\",\"doi\":\"10.1002/anie.202515396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO<jats:sub>2</jats:sub> electrolysis to methane offers a promising route toward enabling long‐term storage of renewable energy. However, electrolysis in zero‐gap membrane electrode assembly (MEA) systems using conventional Cu‐based electrocatalysts is typically limited by relatively low methane productivity and Faradaic efficiency (FE). Here, we conceived an electrochemical assembly strategy that forms a Cu(111)‐dominant catalyst with vacancy defects. In an MEA system at a total current of 1.5 A, the catalyst (Def‐Cu<jats:sub>6</jats:sub>) achieved a record methane FE of 71.46% and production rate of 0.28 µmol s<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>, with relatively stable operation over 10 h. Density functional theory calculations reveal the crucial role of vacancy defects in a Cu(111) surface, which favors the hydrogenation of CO* and promotes methane formation over the competing CO* coupling pathway that leads to multicarbon products. Our findings demonstrate how vacancy defects can be tuned to control catalytic outcomes.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515396\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202515396","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳电解制甲烷为实现可再生能源的长期储存提供了一条有希望的途径。然而,在零间隙膜电极组装(MEA)系统中,使用传统铜基电催化剂的电解通常受到相对较低的甲烷产率和法拉第效率(FE)的限制。在这里,我们设想了一种电化学组装策略,形成具有空位缺陷的Cu(111)主导催化剂。在总电流为1.5 a的MEA体系中,催化剂(Def - Cu6)的甲烷FE达到了创纪录的71.46%,产率为0.28µmol s−1 cm−2,运行时间超过10小时相对稳定。密度泛函理论计算揭示了Cu(111)表面的空位缺陷的关键作用,它有利于CO*的氢化,促进甲烷的形成,而不是竞争的CO*偶联途径,从而导致多碳产物。我们的发现证明了空位缺陷是如何调节来控制催化结果的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical Assembly of a Defective Cu Catalyst for High Current CO2 Electrolysis to Methane in a Zero‐Gap Electrolyzer
CO2 electrolysis to methane offers a promising route toward enabling long‐term storage of renewable energy. However, electrolysis in zero‐gap membrane electrode assembly (MEA) systems using conventional Cu‐based electrocatalysts is typically limited by relatively low methane productivity and Faradaic efficiency (FE). Here, we conceived an electrochemical assembly strategy that forms a Cu(111)‐dominant catalyst with vacancy defects. In an MEA system at a total current of 1.5 A, the catalyst (Def‐Cu6) achieved a record methane FE of 71.46% and production rate of 0.28 µmol s−1 cm−2, with relatively stable operation over 10 h. Density functional theory calculations reveal the crucial role of vacancy defects in a Cu(111) surface, which favors the hydrogenation of CO* and promotes methane formation over the competing CO* coupling pathway that leads to multicarbon products. Our findings demonstrate how vacancy defects can be tuned to control catalytic outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信