Aline Réal, B P Kailash, Winston H Cuddleston, Benjamin Z Muller, Beomjin Jang, Alex Tokolyi, Hong-Hee Won, Jack Humphrey, Towfique Raj, David A Knowles
{"title":"在10,000个死后大脑样本中绘制剪接的遗传效应揭示了神经系统疾病风险的新介质。","authors":"Aline Réal, B P Kailash, Winston H Cuddleston, Benjamin Z Muller, Beomjin Jang, Alex Tokolyi, Hong-Hee Won, Jack Humphrey, Towfique Raj, David A Knowles","doi":"10.1101/2025.09.25.25336663","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative splicing shapes isoform diversity and gene dosage, but how genetic variation impacts splicing in brain disease is still not fully characterized. We assembled BigBrain, a multi-ancestry resource of 10,725 bulk RNA-seq profiles with matched genotypes from 4,656 individuals across 43 tissue-cohort pairs and mapped 68,358 <i>cis</i> -sQTLs affecting 10,966 genes using mixed-model meta-analysis. Using SuSiE, we were able to finemap over half of these sQTLs into 95% credible sets, frequently to a single variant near splice sites. We further annotated variants predicted to alter dosage through frameshifts or nonsense-mediated decay or disrupt protein domains. Colocalization with seven neurodegenerative and psychiatric GWAS highlighted 97 loci where alternative splicing appears to mediate genetic risk. Among sQTL-eQTL pairs with colocalization probability ≥ 0.8 (posterior probability of a shared causal variant), half shared credible-set variants, showing that splicing can complement or act independently of expression. Mechanistic examples include <i>CAMLG</i> , <i>ZDHHC2</i> , and <i>CLU</i> .</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mapping genetic effects on splicing in ten thousand post-mortem brain samples reveals novel mediators of neurological disease risk.\",\"authors\":\"Aline Réal, B P Kailash, Winston H Cuddleston, Benjamin Z Muller, Beomjin Jang, Alex Tokolyi, Hong-Hee Won, Jack Humphrey, Towfique Raj, David A Knowles\",\"doi\":\"10.1101/2025.09.25.25336663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alternative splicing shapes isoform diversity and gene dosage, but how genetic variation impacts splicing in brain disease is still not fully characterized. We assembled BigBrain, a multi-ancestry resource of 10,725 bulk RNA-seq profiles with matched genotypes from 4,656 individuals across 43 tissue-cohort pairs and mapped 68,358 <i>cis</i> -sQTLs affecting 10,966 genes using mixed-model meta-analysis. Using SuSiE, we were able to finemap over half of these sQTLs into 95% credible sets, frequently to a single variant near splice sites. We further annotated variants predicted to alter dosage through frameshifts or nonsense-mediated decay or disrupt protein domains. Colocalization with seven neurodegenerative and psychiatric GWAS highlighted 97 loci where alternative splicing appears to mediate genetic risk. Among sQTL-eQTL pairs with colocalization probability ≥ 0.8 (posterior probability of a shared causal variant), half shared credible-set variants, showing that splicing can complement or act independently of expression. Mechanistic examples include <i>CAMLG</i> , <i>ZDHHC2</i> , and <i>CLU</i> .</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.09.25.25336663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.25.25336663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mapping genetic effects on splicing in ten thousand post-mortem brain samples reveals novel mediators of neurological disease risk.
Alternative splicing shapes isoform diversity and gene dosage, but how genetic variation impacts splicing in brain disease is still not fully characterized. We assembled BigBrain, a multi-ancestry resource of 10,725 bulk RNA-seq profiles with matched genotypes from 4,656 individuals across 43 tissue-cohort pairs and mapped 68,358 cis -sQTLs affecting 10,966 genes using mixed-model meta-analysis. Using SuSiE, we were able to finemap over half of these sQTLs into 95% credible sets, frequently to a single variant near splice sites. We further annotated variants predicted to alter dosage through frameshifts or nonsense-mediated decay or disrupt protein domains. Colocalization with seven neurodegenerative and psychiatric GWAS highlighted 97 loci where alternative splicing appears to mediate genetic risk. Among sQTL-eQTL pairs with colocalization probability ≥ 0.8 (posterior probability of a shared causal variant), half shared credible-set variants, showing that splicing can complement or act independently of expression. Mechanistic examples include CAMLG , ZDHHC2 , and CLU .