从单个细胞的动力学和几何结构中学习细胞特异性网络。

IF 7.7
Stephen Y Zhang, Michael P H Stumpf
{"title":"从单个细胞的动力学和几何结构中学习细胞特异性网络。","authors":"Stephen Y Zhang, Michael P H Stumpf","doi":"10.1016/j.cels.2025.101399","DOIUrl":null,"url":null,"abstract":"<p><p>Cell dynamics and biological function are governed by intricate networks of molecular interactions. Inferring these interactions from data is a notoriously difficult inverse problem. Most existing network inference methods construct population-averaged representations of gene interaction networks, and they do not naturally allow us to infer differences in interaction activity across heterogeneous cell populations. We introduce locaTE, an information theoretic approach that leverages single-cell, dynamical information, together with geometry of the cell-state manifold, to infer cell-specific, causal gene interaction networks in a manner that is agnostic to the topology of the underlying biological trajectory. Through extensive simulation studies and applications to experimental datasets spanning mouse primitive endoderm formation, pancreatic development, and hematopoiesis, we demonstrate superior performance and the generation of additional insights, compared with standard population-averaged inference methods. We find that locaTE provides a powerful network inference method that allows us to distil cell-specific networks from single-cell data. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101399"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning cell-specific networks from dynamics and geometry of single cells.\",\"authors\":\"Stephen Y Zhang, Michael P H Stumpf\",\"doi\":\"10.1016/j.cels.2025.101399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell dynamics and biological function are governed by intricate networks of molecular interactions. Inferring these interactions from data is a notoriously difficult inverse problem. Most existing network inference methods construct population-averaged representations of gene interaction networks, and they do not naturally allow us to infer differences in interaction activity across heterogeneous cell populations. We introduce locaTE, an information theoretic approach that leverages single-cell, dynamical information, together with geometry of the cell-state manifold, to infer cell-specific, causal gene interaction networks in a manner that is agnostic to the topology of the underlying biological trajectory. Through extensive simulation studies and applications to experimental datasets spanning mouse primitive endoderm formation, pancreatic development, and hematopoiesis, we demonstrate superior performance and the generation of additional insights, compared with standard population-averaged inference methods. We find that locaTE provides a powerful network inference method that allows us to distil cell-specific networks from single-cell data. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101399\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞动力学和生物学功能是由复杂的分子相互作用网络控制的。从数据中推断这些相互作用是一个非常困难的反问题。大多数现有的网络推理方法构建了基因相互作用网络的种群平均表示,并且它们不能自然地允许我们推断异质细胞群体相互作用活性的差异。我们介绍locaTE,一种信息理论方法,利用单细胞动态信息,以及细胞状态流形的几何形状,以一种与潜在生物轨迹拓扑结构无关的方式推断细胞特异性的因果基因相互作用网络。通过广泛的模拟研究和应用于小鼠原始内胚层形成、胰腺发育和造血的实验数据集,与标准的群体平均推理方法相比,我们展示了卓越的性能和产生额外的见解。我们发现locaTE提供了一种强大的网络推理方法,使我们能够从单个细胞数据中提取细胞特定网络。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning cell-specific networks from dynamics and geometry of single cells.

Cell dynamics and biological function are governed by intricate networks of molecular interactions. Inferring these interactions from data is a notoriously difficult inverse problem. Most existing network inference methods construct population-averaged representations of gene interaction networks, and they do not naturally allow us to infer differences in interaction activity across heterogeneous cell populations. We introduce locaTE, an information theoretic approach that leverages single-cell, dynamical information, together with geometry of the cell-state manifold, to infer cell-specific, causal gene interaction networks in a manner that is agnostic to the topology of the underlying biological trajectory. Through extensive simulation studies and applications to experimental datasets spanning mouse primitive endoderm formation, pancreatic development, and hematopoiesis, we demonstrate superior performance and the generation of additional insights, compared with standard population-averaged inference methods. We find that locaTE provides a powerful network inference method that allows us to distil cell-specific networks from single-cell data. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信